In the process of grid-connected wind and solar power generation,there are problems of high rate of abandoning wind and light and insufficient energy.In order to solve these problems,we construct a grid-connected wind...In the process of grid-connected wind and solar power generation,there are problems of high rate of abandoning wind and light and insufficient energy.In order to solve these problems,we construct a grid-connected wind-solar hydrogen storage(alkaline electrolyzer(AE)-hydrogen storage tank-battery-proton exchange membrane fuel cell(PEMFC))coupled system architecture.A grid-connected compensation/consumption hierarchical control strategy based on wind-solar hydrogen coupling is proposed.During the grid-connected process of wind and solar power generation,the upper-level control allocates power reasonably to the hydrogen energy storage system by dispatching the power of wind and solar power generation.At the same time,the control strategy ensures that the pressure of the hydrogen storage tank is within the safety range limit,and the lower control completes the control of the duty cycle of the converter in the system.Due to the randomness of wind and light,the hydrogen energy storage system is divided into three working conditions,namely compensation,balance and consumption,and five working modes.The simulation results show that the hydrogen energy storage system compensates for 40%of the power shortage,and consumes 27.5%of the abandoned wind and solar energy,which improves the utilization rate of clean energy.展开更多
Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from ...Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.展开更多
A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was f...A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.展开更多
A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determini...A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.展开更多
The effect of hydrogen inhibitor on partial current densities ofZn, Fe and differential capacitance of electrode/electrolyte interface, and adsorbing type of hydrogen inhibitor were studied by the methods of electroch...The effect of hydrogen inhibitor on partial current densities ofZn, Fe and differential capacitance of electrode/electrolyte interface, and adsorbing type of hydrogen inhibitor were studied by the methods of electrochemistry. The mechanism of current efficiency improvement were explained from the point of valence electron theory. The results indicate that the partial current density of Fe increases in addition of hydrogen inhibitor, which reaches the maximum of 0.14 A/dm^2 when current density is 0.2 A/din〈 Differential capacitance of electrode/electrolyte interface decreases obviously from 20.3μF/cm^2 to 7 μF/cm^2 rapidly with the concentration varying from 0 to 20 mL/L, because hydrogen inhibitor chemically adsorbs on active points of Fe electrode surface selectively. Element S in hydrogen inhibitor with negative electricity and strong capacity of offering electron shares isolated electrons with Fe. The adsorption of H atom is inhibited when adsorbing on active points of Fe electrode surface firstly, and then current efficiency of Zn-Fe alloy electroplating is improved accordingly.展开更多
The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 ...The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 °C were systematically investigated.The dissolution property of high-ferrite gibbsitic bauxite is increased by increasing the dissolution temperature and the Na OH concentration or decreasing the particle size of bauxite,which is easy to dissolve under atmospheric pressure.The kinetic equations of gibbsitic bauxites with different ferrite contents during the dissolution process at different temperatures for different times were established,and the corresponding activation energies were calculated.The ferrite in the gibbsitic bauxite reduces the dissolution speed and increases the activation energy of dissolution,the diffusion process of which is the rate-controlling step.展开更多
The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic ba...The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic bacteria cells for hydrogen production. The quartet structure generation set (QSGS) is used to generate porous structure of the immobilized granule. The effects of porosity of the immobilized granule on flow and concentration fields as well as the hydrogen production performance are investi- gated. Higher porosity facilitates the substrate solution smoothly flowing through the porous granule with increasing velocity, and thus results in higher product concentration inside the immobilized gran- ule. Additionally, the substrate consumption efficiency increases, while hydrogen yield slightly decreases with increasing porosity, and they tend to stable for the porosity larger than 0.5. Furthermore, the LB numerical results have a good agreement with the experimental results. It is demonstrated that the pore-scale LB simulation method coupling with QSGS is available to simulate the photo hydrogen produc- tion in the hioreactor with porous immobilized granules.展开更多
Porous silicon (PSi) prepared from Pt metal-assisted chemical etching (MACE) was demonstrated to possess higher hydrosi- lylation efficiency (-57%) than anodized PSi (-11%) by surface reaction with co-undeceny...Porous silicon (PSi) prepared from Pt metal-assisted chemical etching (MACE) was demonstrated to possess higher hydrosi- lylation efficiency (-57%) than anodized PSi (-11%) by surface reaction with co-undecenyl alcohol (UO). Deconvolution of the SiHx (x = 1-3) stretching bands revealed the abundance of SiH2 species on MaCE PSi was 53%, -10% higher than on ano- dized samples, while both of Sill1 and Sill3 were -5% lower correspondently on MaCE PSi than on anodized samples. The surface SiHx abundances were suggested to account for the higher hydrosilylation efficiency on MaCE PSi. Optimization of Pt-assisted chemical etching parameters suggested a 7-15 nm thick Pt-coating and an etching time of 3-10 min for biochip ap- plications. Scanning electron microscopy images revealed that an isotropic top meso-porous layer was beneficial for hydrosi- lylation and long-term durability under ambient conditions. To end, an example of histidine-tagged protein immobilization and microarray was illustrated. Combining the materials' property, surface chemistry, and micro-fabrication technology together, we envision that silicon based biochip applications have a prosperous future.展开更多
基金Xi’an Key Laboratory of Clean Energy(No.2019219914SYS014CG036)Natural Science Foundation of Xi’an City(No.XA2020-CXRCFW-0247)Yulin Industry-University-Research Cooperation Project(No.2019-173)。
文摘In the process of grid-connected wind and solar power generation,there are problems of high rate of abandoning wind and light and insufficient energy.In order to solve these problems,we construct a grid-connected wind-solar hydrogen storage(alkaline electrolyzer(AE)-hydrogen storage tank-battery-proton exchange membrane fuel cell(PEMFC))coupled system architecture.A grid-connected compensation/consumption hierarchical control strategy based on wind-solar hydrogen coupling is proposed.During the grid-connected process of wind and solar power generation,the upper-level control allocates power reasonably to the hydrogen energy storage system by dispatching the power of wind and solar power generation.At the same time,the control strategy ensures that the pressure of the hydrogen storage tank is within the safety range limit,and the lower control completes the control of the duty cycle of the converter in the system.Due to the randomness of wind and light,the hydrogen energy storage system is divided into three working conditions,namely compensation,balance and consumption,and five working modes.The simulation results show that the hydrogen energy storage system compensates for 40%of the power shortage,and consumes 27.5%of the abandoned wind and solar energy,which improves the utilization rate of clean energy.
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei National Synchrotron Radiation Laboratory(UN2017LHJJ)+1 种基金the Fundamental Research Funds for the Central Universitiescooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)~~
文摘Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.
基金Supported by the National Natural Science Foundation of China(21276123,21490581)the National High Technology Research and Development Program of China(2012AA03A606)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)the Natural Science Research Plan of Jiangsu Universities(11KJB530006)the "Summit of the Six Top Talents" Program of Jiangsu Provincea Project Funded by the Priority Academic Program development of Jiangsu Higher Education Institutions(PAPD)
文摘A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.
基金the State Key Development Program for Basic Research of China (No. G2000048005) the SINOPEC (No.X503023).
文摘A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.
基金Projects(50274073) supported by the National Natural Science Foundation of China
文摘The effect of hydrogen inhibitor on partial current densities ofZn, Fe and differential capacitance of electrode/electrolyte interface, and adsorbing type of hydrogen inhibitor were studied by the methods of electrochemistry. The mechanism of current efficiency improvement were explained from the point of valence electron theory. The results indicate that the partial current density of Fe increases in addition of hydrogen inhibitor, which reaches the maximum of 0.14 A/dm^2 when current density is 0.2 A/din〈 Differential capacitance of electrode/electrolyte interface decreases obviously from 20.3μF/cm^2 to 7 μF/cm^2 rapidly with the concentration varying from 0 to 20 mL/L, because hydrogen inhibitor chemically adsorbs on active points of Fe electrode surface selectively. Element S in hydrogen inhibitor with negative electricity and strong capacity of offering electron shares isolated electrons with Fe. The adsorption of H atom is inhibited when adsorbing on active points of Fe electrode surface firstly, and then current efficiency of Zn-Fe alloy electroplating is improved accordingly.
基金Projects(51104041,51174054,51374065)supported by the National Natural Science Foundation of ChinaProject(N130402010)supported by the Fundamental Research Funds for the Central Universities of China
文摘The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 °C were systematically investigated.The dissolution property of high-ferrite gibbsitic bauxite is increased by increasing the dissolution temperature and the Na OH concentration or decreasing the particle size of bauxite,which is easy to dissolve under atmospheric pressure.The kinetic equations of gibbsitic bauxites with different ferrite contents during the dissolution process at different temperatures for different times were established,and the corresponding activation energies were calculated.The ferrite in the gibbsitic bauxite reduces the dissolution speed and increases the activation energy of dissolution,the diffusion process of which is the rate-controlling step.
基金financial support provided by the State Key Program of National Natural Science of China (51136007)National Natural Science Funds for Distinguished Young Scholars (50825602)
文摘The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic bacteria cells for hydrogen production. The quartet structure generation set (QSGS) is used to generate porous structure of the immobilized granule. The effects of porosity of the immobilized granule on flow and concentration fields as well as the hydrogen production performance are investi- gated. Higher porosity facilitates the substrate solution smoothly flowing through the porous granule with increasing velocity, and thus results in higher product concentration inside the immobilized gran- ule. Additionally, the substrate consumption efficiency increases, while hydrogen yield slightly decreases with increasing porosity, and they tend to stable for the porosity larger than 0.5. Furthermore, the LB numerical results have a good agreement with the experimental results. It is demonstrated that the pore-scale LB simulation method coupling with QSGS is available to simulate the photo hydrogen produc- tion in the hioreactor with porous immobilized granules.
基金the financial support of the National Basic Research Program of China(2013CB922101)the National Natural Science Foundation of China(20827001,91027019,21021062)
文摘Porous silicon (PSi) prepared from Pt metal-assisted chemical etching (MACE) was demonstrated to possess higher hydrosi- lylation efficiency (-57%) than anodized PSi (-11%) by surface reaction with co-undecenyl alcohol (UO). Deconvolution of the SiHx (x = 1-3) stretching bands revealed the abundance of SiH2 species on MaCE PSi was 53%, -10% higher than on ano- dized samples, while both of Sill1 and Sill3 were -5% lower correspondently on MaCE PSi than on anodized samples. The surface SiHx abundances were suggested to account for the higher hydrosilylation efficiency on MaCE PSi. Optimization of Pt-assisted chemical etching parameters suggested a 7-15 nm thick Pt-coating and an etching time of 3-10 min for biochip ap- plications. Scanning electron microscopy images revealed that an isotropic top meso-porous layer was beneficial for hydrosi- lylation and long-term durability under ambient conditions. To end, an example of histidine-tagged protein immobilization and microarray was illustrated. Combining the materials' property, surface chemistry, and micro-fabrication technology together, we envision that silicon based biochip applications have a prosperous future.