Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditi...Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditional cleanup methods and the challenges in detecting small targets,an improved YOLOv5 object detection model was proposed in this study.In order to enhance the model’s sensitivity to small targets and mitigate the impact of redundant information on detection performance,a bi-level routing attention mechanism was introduced and embedded into the backbone network.Additionally,a multi-scale detection head was incorporated into the model,allowing for more comprehensive coverage of floating garbage of various sizes through multi-scale feature extraction and detection.The Focal-EIoU loss function was also employed to optimize the model parameters,improving localization accuracy.Experimental results on the publicly available FloW_Img dataset demonstrated that the improved YOLOv5 model outperforms the original YOLOv5 model in terms of precision and recall,achieving a mAP(mean average precision)of 86.12%,with significant improvements and faster convergence.展开更多
Aimed at the remanufacturing system, the effect of the uncertainty of returns' quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station be...Aimed at the remanufacturing system, the effect of the uncertainty of returns' quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station becoming a bottleneck is also given. By calculating the effective output, the effective operation time (EOT) and the ratio of EOT of each station, the system's current bottleneck of effective output time is determined. By calculating the probability coefficient of variation and index of bottleneck shifting, the quantitative performance of bottleneck shifting is obtained. Discrete event simulation and the experiment design method are adopted to simulate the system, in which the proportion of quality grading, repair rates and process routes are considered. The case study shows that the uncertainty of returns' quality greatly increases the probability of bottleneck shifting, and with the increase of the discrete degree of the returns' repair rate, the bottleneck shifting phenomenon is more obvious. Furthermore, bottleneck shifting is closely related to the process route of the dominating returns' quality grade.展开更多
A frequency-domain equalizer with a mixed-signal adaptive control loop and a novel baseline wander (BLW) canceller are proposed. The equalizer is independent of channel-modeling accuracy,and its control loop is intr...A frequency-domain equalizer with a mixed-signal adaptive control loop and a novel baseline wander (BLW) canceller are proposed. The equalizer is independent of channel-modeling accuracy,and its control loop is intrinsically stable. An AGC function is incorporated into the equalizer without an extra AGC circuit. The proposed BLW canceller uses a peak detector to monitor the BLW and full feedback method to accomplish BLW canceling. High canceling accuracy and robust performance are achieved. The circuits are tested in 0.25μm CMOS technology. Better performance and smaller silicon area are achieved compared with results in the literature.展开更多
In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for impr...In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for improving the accuracy of the drive phase in the gyroscope drive mode.Through the principle of bias signal generation,it can be concluded that the deviation of the drive phase is the main factor affecting the bias stability.To fulfill the purpose of precise drive phase control,a digital signal processing circuit based on the field-programmable gate array(FPGA) with the phase-lock closed-loop control method is described and a demodulation method for phase error suppression is given.Compared with the analog circuit,the bias drift is largely reduced in the new digital circuit and the bias stability is improved from 60 to 19 °/h.The new digital control method can greatly increase the drive phase accuracy,and thus improve the bias stability.展开更多
In February 2006,a large amount of unknown floating microorganisms appeared in the Hailang River(HR) in the City of Hailin,Heilongjiang Province,China.The microorganisms caused the river water fouling and threatened t...In February 2006,a large amount of unknown floating microorganisms appeared in the Hailang River(HR) in the City of Hailin,Heilongjiang Province,China.The microorganisms caused the river water fouling and threatened the clean water supply of the city.To identify the unknown floating organisms,morphological and histological inspection,PCR,cloning and sequence analysis were conducted.The results revealed that the unknown floating organisms in the river were a novel species that likely belonged to oomycetes in Saprolegniales.The organisms were named Saprolegnia sp.HL0602.展开更多
The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is feature...The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is featured by a far deeper level of uncertainty than new manufacturing,such as probabilistic routing files,and highly variable processing time.The stochastic disturbances result in the production bottlenecks,which constrain the productivity of the job shop.The uncertainties in the remanufacturing process cause the bottlenecks to shift when the workshop is processing.Considering this outstanding problem,many researchers try to optimize the production process to mitigate dynamic bottlenecks toward a balanced state.This paper proposes a data-driven method to predict bottlenecks in the remanufacturing system with multi-variant uncertainties.Firstly,discrete event simulation technology is applied to establish a simulation model of the remanufacturing production line and calculate the bottleneck index to identify bottlenecks.Secondly,a data-driven method,auto-regressive moving average(ARMA)model is employed to predict the bottlenecks in the system based on real-time data captured by the Arena software.Finally,the proposed prediction method is verified on real data from the automobile engine remanufacturing production line.展开更多
A new SO1 high-voltage device structure with nonuniform thickness drift region (n-uni SOl) and its optimiza- tion design method are proposed. Owing to the nonuniform thickness drift region, the electric field in the...A new SO1 high-voltage device structure with nonuniform thickness drift region (n-uni SOl) and its optimiza- tion design method are proposed. Owing to the nonuniform thickness drift region, the electric field in the SOl layer is modulated and the electric field in the buried layer is enhanced, resulting in an enhancement of breakdown voltage. An analytical model taking the modulation effect into account is presented to optimize the device structure. Based on the analytical model, the dependencies of the electric field distribution and breakdown voltage on the device parameters are investigated. Numerical simulations support the analytical model. The breakdown voltage of the n-uni SOl LDMOS with n = 3 is twice as high as that of a conventional SO1 while its on-resistance maintains low.展开更多
Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating...Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating space robot in task space. Since nei- ther the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adap- tive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guar- antee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control.展开更多
文摘Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditional cleanup methods and the challenges in detecting small targets,an improved YOLOv5 object detection model was proposed in this study.In order to enhance the model’s sensitivity to small targets and mitigate the impact of redundant information on detection performance,a bi-level routing attention mechanism was introduced and embedded into the backbone network.Additionally,a multi-scale detection head was incorporated into the model,allowing for more comprehensive coverage of floating garbage of various sizes through multi-scale feature extraction and detection.The Focal-EIoU loss function was also employed to optimize the model parameters,improving localization accuracy.Experimental results on the publicly available FloW_Img dataset demonstrated that the improved YOLOv5 model outperforms the original YOLOv5 model in terms of precision and recall,achieving a mAP(mean average precision)of 86.12%,with significant improvements and faster convergence.
基金The Program for Special Talent in Six Fields of Jiangsu Province(No.2013ZBZZ-046)the Program of Lanzhou Technology Development(No.2014-1-175)
文摘Aimed at the remanufacturing system, the effect of the uncertainty of returns' quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station becoming a bottleneck is also given. By calculating the effective output, the effective operation time (EOT) and the ratio of EOT of each station, the system's current bottleneck of effective output time is determined. By calculating the probability coefficient of variation and index of bottleneck shifting, the quantitative performance of bottleneck shifting is obtained. Discrete event simulation and the experiment design method are adopted to simulate the system, in which the proportion of quality grading, repair rates and process routes are considered. The case study shows that the uncertainty of returns' quality greatly increases the probability of bottleneck shifting, and with the increase of the discrete degree of the returns' repair rate, the bottleneck shifting phenomenon is more obvious. Furthermore, bottleneck shifting is closely related to the process route of the dominating returns' quality grade.
文摘A frequency-domain equalizer with a mixed-signal adaptive control loop and a novel baseline wander (BLW) canceller are proposed. The equalizer is independent of channel-modeling accuracy,and its control loop is intrinsically stable. An AGC function is incorporated into the equalizer without an extra AGC circuit. The proposed BLW canceller uses a peak detector to monitor the BLW and full feedback method to accomplish BLW canceling. High canceling accuracy and robust performance are achieved. The circuits are tested in 0.25μm CMOS technology. Better performance and smaller silicon area are achieved compared with results in the literature.
基金The National Natural Science Foundation of China (No.60974116)the Research Fund of Aeronautics Science (No. 20090869007)Specialized Research Fund for the Doctoral Program of Higher Education(No. 200802861063)
文摘In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for improving the accuracy of the drive phase in the gyroscope drive mode.Through the principle of bias signal generation,it can be concluded that the deviation of the drive phase is the main factor affecting the bias stability.To fulfill the purpose of precise drive phase control,a digital signal processing circuit based on the field-programmable gate array(FPGA) with the phase-lock closed-loop control method is described and a demodulation method for phase error suppression is given.Compared with the analog circuit,the bias drift is largely reduced in the new digital circuit and the bias stability is improved from 60 to 19 °/h.The new digital control method can greatly increase the drive phase accuracy,and thus improve the bias stability.
基金Supported by Infectious Diseases Special Project,Minister of Health of China(2008ZX10004-001)
文摘In February 2006,a large amount of unknown floating microorganisms appeared in the Hailang River(HR) in the City of Hailin,Heilongjiang Province,China.The microorganisms caused the river water fouling and threatened the clean water supply of the city.To identify the unknown floating organisms,morphological and histological inspection,PCR,cloning and sequence analysis were conducted.The results revealed that the unknown floating organisms in the river were a novel species that likely belonged to oomycetes in Saprolegniales.The organisms were named Saprolegnia sp.HL0602.
基金Projects(51975099,51775086)supported by the Natural Science Foundation of China。
文摘The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is featured by a far deeper level of uncertainty than new manufacturing,such as probabilistic routing files,and highly variable processing time.The stochastic disturbances result in the production bottlenecks,which constrain the productivity of the job shop.The uncertainties in the remanufacturing process cause the bottlenecks to shift when the workshop is processing.Considering this outstanding problem,many researchers try to optimize the production process to mitigate dynamic bottlenecks toward a balanced state.This paper proposes a data-driven method to predict bottlenecks in the remanufacturing system with multi-variant uncertainties.Firstly,discrete event simulation technology is applied to establish a simulation model of the remanufacturing production line and calculate the bottleneck index to identify bottlenecks.Secondly,a data-driven method,auto-regressive moving average(ARMA)model is employed to predict the bottlenecks in the system based on real-time data captured by the Arena software.Finally,the proposed prediction method is verified on real data from the automobile engine remanufacturing production line.
文摘A new SO1 high-voltage device structure with nonuniform thickness drift region (n-uni SOl) and its optimiza- tion design method are proposed. Owing to the nonuniform thickness drift region, the electric field in the SOl layer is modulated and the electric field in the buried layer is enhanced, resulting in an enhancement of breakdown voltage. An analytical model taking the modulation effect into account is presented to optimize the device structure. Based on the analytical model, the dependencies of the electric field distribution and breakdown voltage on the device parameters are investigated. Numerical simulations support the analytical model. The breakdown voltage of the n-uni SOl LDMOS with n = 3 is twice as high as that of a conventional SO1 while its on-resistance maintains low.
文摘Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating space robot in task space. Since nei- ther the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adap- tive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guar- antee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control.