Deep Catalytic Cracking (DCC) developed by RIPP (Research Institute of Petroleum Processing), SINOPEC is a catalytic conversion process derived from the FCC process using heavy feedstocks for producing raw materia...Deep Catalytic Cracking (DCC) developed by RIPP (Research Institute of Petroleum Processing), SINOPEC is a catalytic conversion process derived from the FCC process using heavy feedstocks for producing raw materials used in the petrochemical industry, such as ethylene and propylene. It was firstly demonstrated in 1990 and has been commercialized since 1994. Up to now, seven units have been put into production inside and outside China, and many other DCC units are under construction and in the phase of design now. Products ofpropylene and ethylene from DCCU have been used as feedstock for manufacturing high quality polypropylene, polyethylene and acrylonitrile. Many innovations on technological process, and preparation of catalytic materials used in the DCC process will be presented in this paper.展开更多
This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the...This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.展开更多
HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons. The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic ...HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons. The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic activity for olefins removal and the service life of the catalyst were tested in a fixed bed microreactor. The results showed that the catalyst containing 3% phospho-molybdic acid, which was calcined at 550℃, demonstrated the best activity for olefins removal. The catalyst could be regenerated and could perform still very well. Catalyst characterization was performed by XRD and measured by pyridine-FTIR spectrometry. The test results indicated that the activity of the catalyst was related with the effect of acid concentration and acid strength. Besides, the deactivation of the catalyst was associated with the formation of coke deposits and the deactivated catalyst could recover its activity by oxidation with air under a proper temperature.展开更多
A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional c...A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.展开更多
The process of benzene hydrogenation over Mo2C catalyst has been studied. Mo2C was the active phase in benzene hydrogenation. The major problem with the metal carbides was their poor stability due to deactivation by c...The process of benzene hydrogenation over Mo2C catalyst has been studied. Mo2C was the active phase in benzene hydrogenation. The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.展开更多
In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test re...In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test results indicated that the liquid product yield increased obviously, after the surface of FCC equilibrium catalyst was impregnated with the co-catalyst. The yields of dry gas, slurry and coke decreased, while the diesel yield changed slightly. And the crackability of residue was increased; the rate of coke deposition on catalyst surface was decreased, with the thermal cracking reactions inhibited. All these results showed that the co-catalyst could improve the density of acid sites and change the catalyst acidity, which could promote to prolong the catalyst activity by depositing the co-catalyst on the surface of FCC equilibrium catalysts.展开更多
Two novel ashless and non-phosphorus S, B-containing morpholine derivatives, MBOC and MBOD, were prepared and their tribological behaviors in rapeseed oil (RSO) were evaluated using a four-ball tester. Thermal degra...Two novel ashless and non-phosphorus S, B-containing morpholine derivatives, MBOC and MBOD, were prepared and their tribological behaviors in rapeseed oil (RSO) were evaluated using a four-ball tester. Thermal degradation tests were conducted to identify their thermal stabilities using a thermo-gravimetric analyzer. The worn surfaces of the steel balls were investigated by scanning electron microscopy (SEM). The results indicated that the additives possessed high thermal stabilities and good load-carrying capacities. Moreover, they both had good anti-wear and friction reducing property at a relatively high concentration (1.5 m%) and under all test loads. The results of XPS analyses illustrated that the prepared compounds as additives in RSO could form a protective film containing inorganic sulfide, sulfate, oxidized compounds and organic nitrogen-containing compounds on the metal surface during the sliding process.展开更多
29Si-NMR and 1H-NMR were used to follow up the basic hydrolysis of tetraethyl orthosilicate (TOES) and the results showed that species of monomer, dimer, trimer, cyclic and polymer silicates were formed. The monomer...29Si-NMR and 1H-NMR were used to follow up the basic hydrolysis of tetraethyl orthosilicate (TOES) and the results showed that species of monomer, dimer, trimer, cyclic and polymer silicates were formed. The monomer and dimer were favorable for the high activity of zeolite. XRD, 13C CP/MAS and 29Si NMR were used to trace the crystallization process of hollow titanium silicalite zeolites (HTS). The results showed that the induction period of HTS was 80 min, and subsequently it took next 10 min to form HTS and the remaining time of the crystallization period might function for cleaning up the pores and/or washing off the impurities from the HTS zeolite. The catalytic oxidation performance of HTS zeolite is different from that of the acid activity of zeolite in which the conventional definition of crystallinity does not reflect the catalytic oxidation activity proportionally. The synthesized HTS samples were character- ized by XRD, FT-IR, UV-Vis and Raman spectra. It was confirmed that Ti was incorporated into the zeolite framework. The synthesized HTS samples revealed good repeatability and high activity for oxidation of phenol into diphenol.展开更多
Based on the study relating to the influence of additives on the hydrodesulfurization performance of Fe-Mo-Al2O3 catalysts, it was found out that the introduction of additives could increase considerably the activity ...Based on the study relating to the influence of additives on the hydrodesulfurization performance of Fe-Mo-Al2O3 catalysts, it was found out that the introduction of additives could increase considerably the activity of Fe-Mo/Al2O3 catalysts in the reaction of hydrodesulfurization of gasoline and diesel fractions. The introduction of zeolites (HY, HZSM) and other additives could lead to an increase of the concentration of acid centers, which were able to react with sulfur compounds, along with an increase of total catalysts’ pore volume, which could improve the capability of catalyst to adsorb the hydrogen and feed oil.展开更多
This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tia...This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.展开更多
Reduction of sulfur content in FCC gasoline was studied in a fixed fluid bed (FFB) unit by using metal-modified LV-23 FCC catalyst. The results showed that the sulfur content in FCC gasoline could be reduced with LV-2...Reduction of sulfur content in FCC gasoline was studied in a fixed fluid bed (FFB) unit by using metal-modified LV-23 FCC catalyst. The results showed that the sulfur content in FCC gasoline could be reduced with LV-23 catalyst modified with zinc, palladium, zinc-palladium, zinc-cobalt, and zinc-nickel. Among these metals or metal combinations, palladium-containing catalyst was the most effective. Desulfurization of the heavy fraction of FCC gasoline was more effective than full-range gasoline under the same conditions with palladium-containing catalysts. A high reaction temperature was favorable to desulfurization, but it would reduce the yield of liquid product. After desulfurization reaction, the olefin content of product gasoline decreased while the aromatic and iso-alkane contents increased. Removal of thiophene and benzothiophene is higher.展开更多
The evaluation testing of propylene promoter LCC-A was carried out in a bench scale fixed fluidized bed reactor and a pilot scale riser. The commercial application experiments on this promoter were conducted in the #3...The evaluation testing of propylene promoter LCC-A was carried out in a bench scale fixed fluidized bed reactor and a pilot scale riser. The commercial application experiments on this promoter were conducted in the #3 RFCCU at Dalian Petrochemical Co. and #1 integrated refining unit at Shanghai Petro- chemical Co. The test results have shown that after adding 5%—6% of the promoter LCC-A to the main FCC catalyst the propylene yield and selectivity were raised obviously. The octane rating of FCC gasoline was increased by more than one unit; which could alleviate the negative impact of octane number decline resulted from reduction of olefin content in FCC naphtha along with an increased propylene yield to meet the urgent market demand for propylene. The test results achieved at Shanghai Petrochemical Company have revealed that when the addition of the LCC-A promoter reached 5% of the catalyst inventory, its performance could be on a par with that of the overseas promoter OlefinsMax.展开更多
文摘Deep Catalytic Cracking (DCC) developed by RIPP (Research Institute of Petroleum Processing), SINOPEC is a catalytic conversion process derived from the FCC process using heavy feedstocks for producing raw materials used in the petrochemical industry, such as ethylene and propylene. It was firstly demonstrated in 1990 and has been commercialized since 1994. Up to now, seven units have been put into production inside and outside China, and many other DCC units are under construction and in the phase of design now. Products ofpropylene and ethylene from DCCU have been used as feedstock for manufacturing high quality polypropylene, polyethylene and acrylonitrile. Many innovations on technological process, and preparation of catalytic materials used in the DCC process will be presented in this paper.
文摘This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.
文摘HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons. The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic activity for olefins removal and the service life of the catalyst were tested in a fixed bed microreactor. The results showed that the catalyst containing 3% phospho-molybdic acid, which was calcined at 550℃, demonstrated the best activity for olefins removal. The catalyst could be regenerated and could perform still very well. Catalyst characterization was performed by XRD and measured by pyridine-FTIR spectrometry. The test results indicated that the activity of the catalyst was related with the effect of acid concentration and acid strength. Besides, the deactivation of the catalyst was associated with the formation of coke deposits and the deactivated catalyst could recover its activity by oxidation with air under a proper temperature.
文摘A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.
文摘The process of benzene hydrogenation over Mo2C catalyst has been studied. Mo2C was the active phase in benzene hydrogenation. The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.
文摘In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test results indicated that the liquid product yield increased obviously, after the surface of FCC equilibrium catalyst was impregnated with the co-catalyst. The yields of dry gas, slurry and coke decreased, while the diesel yield changed slightly. And the crackability of residue was increased; the rate of coke deposition on catalyst surface was decreased, with the thermal cracking reactions inhibited. All these results showed that the co-catalyst could improve the density of acid sites and change the catalyst acidity, which could promote to prolong the catalyst activity by depositing the co-catalyst on the surface of FCC equilibrium catalysts.
基金the PLA General Logistics Department(No.[2006]357)the Hunan Science Program,P R China(06FJ4112)
文摘Two novel ashless and non-phosphorus S, B-containing morpholine derivatives, MBOC and MBOD, were prepared and their tribological behaviors in rapeseed oil (RSO) were evaluated using a four-ball tester. Thermal degradation tests were conducted to identify their thermal stabilities using a thermo-gravimetric analyzer. The worn surfaces of the steel balls were investigated by scanning electron microscopy (SEM). The results indicated that the additives possessed high thermal stabilities and good load-carrying capacities. Moreover, they both had good anti-wear and friction reducing property at a relatively high concentration (1.5 m%) and under all test loads. The results of XPS analyses illustrated that the prepared compounds as additives in RSO could form a protective film containing inorganic sulfide, sulfate, oxidized compounds and organic nitrogen-containing compounds on the metal surface during the sliding process.
基金Project supported by the National Science Foundation of China(2006CB202508)
文摘29Si-NMR and 1H-NMR were used to follow up the basic hydrolysis of tetraethyl orthosilicate (TOES) and the results showed that species of monomer, dimer, trimer, cyclic and polymer silicates were formed. The monomer and dimer were favorable for the high activity of zeolite. XRD, 13C CP/MAS and 29Si NMR were used to trace the crystallization process of hollow titanium silicalite zeolites (HTS). The results showed that the induction period of HTS was 80 min, and subsequently it took next 10 min to form HTS and the remaining time of the crystallization period might function for cleaning up the pores and/or washing off the impurities from the HTS zeolite. The catalytic oxidation performance of HTS zeolite is different from that of the acid activity of zeolite in which the conventional definition of crystallinity does not reflect the catalytic oxidation activity proportionally. The synthesized HTS samples were character- ized by XRD, FT-IR, UV-Vis and Raman spectra. It was confirmed that Ti was incorporated into the zeolite framework. The synthesized HTS samples revealed good repeatability and high activity for oxidation of phenol into diphenol.
文摘Based on the study relating to the influence of additives on the hydrodesulfurization performance of Fe-Mo-Al2O3 catalysts, it was found out that the introduction of additives could increase considerably the activity of Fe-Mo/Al2O3 catalysts in the reaction of hydrodesulfurization of gasoline and diesel fractions. The introduction of zeolites (HY, HZSM) and other additives could lead to an increase of the concentration of acid centers, which were able to react with sulfur compounds, along with an increase of total catalysts’ pore volume, which could improve the capability of catalyst to adsorb the hydrogen and feed oil.
文摘This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.
文摘Reduction of sulfur content in FCC gasoline was studied in a fixed fluid bed (FFB) unit by using metal-modified LV-23 FCC catalyst. The results showed that the sulfur content in FCC gasoline could be reduced with LV-23 catalyst modified with zinc, palladium, zinc-palladium, zinc-cobalt, and zinc-nickel. Among these metals or metal combinations, palladium-containing catalyst was the most effective. Desulfurization of the heavy fraction of FCC gasoline was more effective than full-range gasoline under the same conditions with palladium-containing catalysts. A high reaction temperature was favorable to desulfurization, but it would reduce the yield of liquid product. After desulfurization reaction, the olefin content of product gasoline decreased while the aromatic and iso-alkane contents increased. Removal of thiophene and benzothiophene is higher.
文摘The evaluation testing of propylene promoter LCC-A was carried out in a bench scale fixed fluidized bed reactor and a pilot scale riser. The commercial application experiments on this promoter were conducted in the #3 RFCCU at Dalian Petrochemical Co. and #1 integrated refining unit at Shanghai Petro- chemical Co. The test results have shown that after adding 5%—6% of the promoter LCC-A to the main FCC catalyst the propylene yield and selectivity were raised obviously. The octane rating of FCC gasoline was increased by more than one unit; which could alleviate the negative impact of octane number decline resulted from reduction of olefin content in FCC naphtha along with an increased propylene yield to meet the urgent market demand for propylene. The test results achieved at Shanghai Petrochemical Company have revealed that when the addition of the LCC-A promoter reached 5% of the catalyst inventory, its performance could be on a par with that of the overseas promoter OlefinsMax.