The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and sco...The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction. When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.展开更多
The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -...The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -750℃. Heating rate 2 ℃/rain is considered low, while intermediate one covers the range 5 ℃/min and high heating rate is 10℃/min. The controlling parameters studied were the final pyrolysis temperature and the influence of the heating rate as well as type. The heating rate has an important effect on the pyrolysis of oil shale and the amount of residual carbon obtained therefore. It is found that increasing the heating rate and py- rolysis temperature also increases the production of oil and the total weight loss. Higher heating rates resulted in higher rates of accumulation. The rate of oil and water collection passed through the maximum of different heat- ing rates at different pyrolysis temperatures. Heating rate affected density, oil conversion and oil yield.展开更多
Diffusion is a ubiquitous physical phenomenon where thermodynamic nonequilibrium effects(TNEs) are outstanding issues. In this work, we employ the discrete Boltzmann method to investigate the TNEs in the dynamic proce...Diffusion is a ubiquitous physical phenomenon where thermodynamic nonequilibrium effects(TNEs) are outstanding issues. In this work, we employ the discrete Boltzmann method to investigate the TNEs in the dynamic process of binary diffusion. The main features of the distribution function in velocity space are recovered and discussed.It is found that, with the decreasing gradients of macroscopic quantities(such as density, concentration, velocity, etc.),both the local and global TNEs decrease with the time but increase with the relaxation time in a power law, respectively.展开更多
文摘The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction. When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.
文摘The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -750℃. Heating rate 2 ℃/rain is considered low, while intermediate one covers the range 5 ℃/min and high heating rate is 10℃/min. The controlling parameters studied were the final pyrolysis temperature and the influence of the heating rate as well as type. The heating rate has an important effect on the pyrolysis of oil shale and the amount of residual carbon obtained therefore. It is found that increasing the heating rate and py- rolysis temperature also increases the production of oil and the total weight loss. Higher heating rates resulted in higher rates of accumulation. The rate of oil and water collection passed through the maximum of different heat- ing rates at different pyrolysis temperatures. Heating rate affected density, oil conversion and oil yield.
基金Supported by the MOST National Key Research and Development Programme under Grant No.2016YFB0600805the China Postdoctoral Science Foundation under Grant No.2017M620757+1 种基金the Center for Combustion Energy at Tsinghua University,Natural Science Foundation of Hebei Province under Grant Nos.A2017409014,ZD2017001 and A201500111,FJKLMAA,Fujian Normal Universitythe UK Engineering and Physical Sciences Research Council under the Project UK Consortium on Mesoscale Engineering Sciences(UKCOMES)under Grant No.EP/L00030X/1
文摘Diffusion is a ubiquitous physical phenomenon where thermodynamic nonequilibrium effects(TNEs) are outstanding issues. In this work, we employ the discrete Boltzmann method to investigate the TNEs in the dynamic process of binary diffusion. The main features of the distribution function in velocity space are recovered and discussed.It is found that, with the decreasing gradients of macroscopic quantities(such as density, concentration, velocity, etc.),both the local and global TNEs decrease with the time but increase with the relaxation time in a power law, respectively.