To explore the influence of karst cavity pressure on the failure mechanisms of rock layers above water-filled caves, novel blow-out and collapse mechanisms are put forward in this study. The proposed method uses the n...To explore the influence of karst cavity pressure on the failure mechanisms of rock layers above water-filled caves, novel blow-out and collapse mechanisms are put forward in this study. The proposed method uses the nonlinear optimization to obtain the failure profiles of surrounding layered rock with water-filled cave at the bottom of the tunnel. By referring to the functional catastrophe theory, stability analysis with different properties in different rock layers is implemented with considering the incorporation of seepage forces since the groundwater cannot be ignored in the catastrophe analysis of deep tunnel bottom. Also the parametric analysis is implemented to discuss the influences of different rock strength factors on the failure profiles. In order to offer a good guide of design for the excavation of deep tunnels above the water-filled caves, the proposed method is applied to design of the minimum effective height for rock layer. The results obtained by this work agree well with the existing published ones.展开更多
In order to improve the quality of laneways and tunnel excavation by drilling and blasting and by making effective use of explosive energy, a model experiment of rock blasting with a single borehole and a double free-...In order to improve the quality of laneways and tunnel excavation by drilling and blasting and by making effective use of explosive energy, a model experiment of rock blasting with a single borehole and a double free-surface was performed with the objective of studying the effect of parameters such as charge structure, free-surface and rock compressive strength on rock blasting.The model experiments indicate that:1) the smaller the rock compressive strength and density, the more distinctive the cavity expanding action by blasting;2) the powder factor in an air-decoupling charge structure is larger than that in a coupling charge structure, i.e., the explosive energy in an air-decoupling charge structure transferred to the rocks is less than that in a coupling charge structure;3) a free-surface improves the utilizations of explosive energy;4) an air-decoupling charge structure helps to maintain the integrity and stability of wall rock in controlled perimeter blasting, such as in roadways and tunnel excavation by drilling and blasting.展开更多
Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surfac...Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.展开更多
Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse cons...Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse consequences of blasting. Since there are several effective variables on ground vibrations that have highly nonlinear interactions, no comprehensive model of the blast-induced vibrations are available. In this study, the genetic expression programming technique was employed for prediction of the frequency of the adjacent ground vibrations. Nine input variables were used for prediction of the vibration frequencies at different distances from the blasting face. A high coefficient of determination with low mean absolute percentage error(MAPE) was achieved that demonstrated the suitability of the algorithm in this case. The proposed model outperformed an artificial neural network model that was proposed by other authors for the same dataset.展开更多
The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the stru...The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.展开更多
The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ str...The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ stress and low-permeability of Ji-15 seam of No.12 coal mine in Pingmei Group. The law of detonation wave propagation and ground-stress change distribution were simulated by means of the finite element analysis software. The technology of high-low-blasting, composed of high blasting(deep crossing hole controlled hydraulic blasting) and low blasting (special roadway deep hole controlled blasting) were developed. The research shows that around control hole produce maximum tension fracture failure, and result in directional and controlled Masting, when the distance between control hole and blasting hole is 1.2 m. The theory makes blasting force and hydraulic force advantage superimpose, which raises the effect of pressure relief and permeability enhancements compared with general blasting. High blasting influence radius and low blasting influence radius superimposed with each other, that prevents methane dynamic disaster. The result of type approval test shows that the technology can increase gas permeability as high as 22.7-36.2 ratio, decrease gas pressure from 2.85 MPa to 0.30 MPa, increase drilling influence radius to about 9 m. The technology realizes regional overall permeability improvement, that provides a new technical measure for methane dynamic disaster prevention.展开更多
The cumulative blasting using PVC slotting pipe was tested for rapid driving in hard-rock roadway construction. First, the outhors optimized blasting parameters on 2.2 m scheme, and did both-sides comparative experime...The cumulative blasting using PVC slotting pipe was tested for rapid driving in hard-rock roadway construction. First, the outhors optimized blasting parameters on 2.2 m scheme, and did both-sides comparative experiment of the surrounding holes after the blasting success. The results show that the application of slotting tube obtains four more cut contours than the case without it. Finally we did full-section control and non-control blasting comparative experiment, the results show that the rates of half-hole marks and the non-smooth grades of the cut contours can reach 95%, hole spacing is expanded to larger than 550 mm, and 550 mm is the best under the K2 limestone conditions.展开更多
Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanis...Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanism of cool tower collapse through selecting blasting parameters and selecting gap form, gap size and gap angle. The cool tower was twisted, collapsed directionally and broken well according to the design requirements. The expected results and purposes of blasting were obtained with no back blow, total blasted pile approximates to 4 - 5 m, no occurrence of flying stones and no damage to fixed buildings and equipment, the large-sized hyperbolic thin-wall reinforced concrete cool towers are twisted during blasting and it collapses well with good breaking. The test and measurement of blasting vibrating velocity was carried out during blasting and the measuring results are much less than critical values specified by Safety Regulations for Blasting. The study shows that gap form, gap size and gap angle are the key factors to cool tower collapse and will give beneficial references to related theoretical study and field application.展开更多
The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were ...The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.展开更多
Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was ...Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.展开更多
Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and ...Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.展开更多
Precision blasting,which is different from traditional control blasting,is regarded as the sign of new development stage of engineering blasting.The definition,connotation,technology system and current situation of it...Precision blasting,which is different from traditional control blasting,is regarded as the sign of new development stage of engineering blasting.The definition,connotation,technology system and current situation of its application and development were described briefly.With regard to the prospect of precision blasting,following aspects for further study are recommended:a.A multiple disciplinary study should be developed for a more understanding on the explosive energy release and quantitative blasting design;b.according to the requirements of digital blasting objective,syncretic study of precision blasting and technology should be enhanced;c.numerical simulation was an important tool for optimizing engineering blasting scheme and blasting harmful effects control,a more elaborate precision numerical simulation method should be studied furthermore;d.the modernization and standardization of precision blasting construction should be enhanced.展开更多
Major mineral hazard identifications should consider perilous types of fatal accidents in collieries from its definition, and then set existent hazardous objects and their relevant amount as referenced factors. Elimin...Major mineral hazard identifications should consider perilous types of fatal accidents in collieries from its definition, and then set existent hazardous objects and their relevant amount as referenced factors. Eliminating hazards in systems and decreasing risks are their essential purposes with help of hazard identification, risk evaluation and management. By pre-control on major hazards, fatal accidents are avoided, stuffs' safety and healthy are protected, levels of safe management are enhanced, and perpetual systems are built up finally. However, choosing the proper identification and evaluation is a problem all along. Based on specific condition in Jiangou Coal Mine, method of LEC was applied for hazard identification and evaluation in the pre-blasting process within horizontal section top-coal mechanized caving of steep seams. And control measures to of each hazard were put forward. The identification method combining qualitative and quantitative analysis. So, it is practical and operable for the method to develop the given scientific research and has a distinctive impact on high efficiency and safety products for pre-blasting in horizontal section top-coal mechanized caving of steep seams.展开更多
Rational rock-explosive matching is of great importance to enhancing explosive energy effective utilization and improving rock fragmentation effect.The traditionally emphasized method of acoustic impedance matching is...Rational rock-explosive matching is of great importance to enhancing explosive energy effective utilization and improving rock fragmentation effect.The traditionally emphasized method of acoustic impedance matching is not rational.Based on blasting breakage mechanism,a new theory of rock-explosive matching in drilling and blasting is proposed.The new approach chooses explosive parameters by reasonable control of the size of crushed zone under the condition of fully fragmentation between adjacent blast holes.This method can directly reflect the blasting fragmentation effect and energy effective utilization,which is easy to implement.Also,a modified model is developed,taken adjacent blast hole blasting loading into account.As a result,explosive parameters of different grades of rock are given in full coupling on-site mixed explosive charge for different project objectives.展开更多
The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mi...The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mines,and the average boulder yield was as high as 22.7%.In order to develop the mine production efficiency,the circular medium-length hole blasting technology was proposed and field tests were carried out.The test results showed that circular medium-length hole blasting mining can reduce the average boulder yield to 10.3%.Compared with the traditional scalloped medium-length hole blasting mining,the average boulder yield was decreased by 12.4%.The daily yield of ore for the panel on duty was increased by 152.29 t,and the growth rate was 51.1%.The new technology can reduce the time for the handling of boulder and the consumption of explosives and detonators for recrushing,and increase the efficiency of mining while reduce the mining cost,which has received good blasting effects.展开更多
文摘To explore the influence of karst cavity pressure on the failure mechanisms of rock layers above water-filled caves, novel blow-out and collapse mechanisms are put forward in this study. The proposed method uses the nonlinear optimization to obtain the failure profiles of surrounding layered rock with water-filled cave at the bottom of the tunnel. By referring to the functional catastrophe theory, stability analysis with different properties in different rock layers is implemented with considering the incorporation of seepage forces since the groundwater cannot be ignored in the catastrophe analysis of deep tunnel bottom. Also the parametric analysis is implemented to discuss the influences of different rock strength factors on the failure profiles. In order to offer a good guide of design for the excavation of deep tunnels above the water-filled caves, the proposed method is applied to design of the minimum effective height for rock layer. The results obtained by this work agree well with the existing published ones.
文摘In order to improve the quality of laneways and tunnel excavation by drilling and blasting and by making effective use of explosive energy, a model experiment of rock blasting with a single borehole and a double free-surface was performed with the objective of studying the effect of parameters such as charge structure, free-surface and rock compressive strength on rock blasting.The model experiments indicate that:1) the smaller the rock compressive strength and density, the more distinctive the cavity expanding action by blasting;2) the powder factor in an air-decoupling charge structure is larger than that in a coupling charge structure, i.e., the explosive energy in an air-decoupling charge structure transferred to the rocks is less than that in a coupling charge structure;3) a free-surface improves the utilizations of explosive energy;4) an air-decoupling charge structure helps to maintain the integrity and stability of wall rock in controlled perimeter blasting, such as in roadways and tunnel excavation by drilling and blasting.
文摘Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.
文摘Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse consequences of blasting. Since there are several effective variables on ground vibrations that have highly nonlinear interactions, no comprehensive model of the blast-induced vibrations are available. In this study, the genetic expression programming technique was employed for prediction of the frequency of the adjacent ground vibrations. Nine input variables were used for prediction of the vibration frequencies at different distances from the blasting face. A high coefficient of determination with low mean absolute percentage error(MAPE) was achieved that demonstrated the suitability of the algorithm in this case. The proposed model outperformed an artificial neural network model that was proposed by other authors for the same dataset.
文摘The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.
基金Supported by the Major Project of Chinese National Program for Fundamental Research and Development (973) (2011CB201205) the Nature Science Foundation of China (50804048)
文摘The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ stress and low-permeability of Ji-15 seam of No.12 coal mine in Pingmei Group. The law of detonation wave propagation and ground-stress change distribution were simulated by means of the finite element analysis software. The technology of high-low-blasting, composed of high blasting(deep crossing hole controlled hydraulic blasting) and low blasting (special roadway deep hole controlled blasting) were developed. The research shows that around control hole produce maximum tension fracture failure, and result in directional and controlled Masting, when the distance between control hole and blasting hole is 1.2 m. The theory makes blasting force and hydraulic force advantage superimpose, which raises the effect of pressure relief and permeability enhancements compared with general blasting. High blasting influence radius and low blasting influence radius superimposed with each other, that prevents methane dynamic disaster. The result of type approval test shows that the technology can increase gas permeability as high as 22.7-36.2 ratio, decrease gas pressure from 2.85 MPa to 0.30 MPa, increase drilling influence radius to about 9 m. The technology realizes regional overall permeability improvement, that provides a new technical measure for methane dynamic disaster prevention.
文摘The cumulative blasting using PVC slotting pipe was tested for rapid driving in hard-rock roadway construction. First, the outhors optimized blasting parameters on 2.2 m scheme, and did both-sides comparative experiment of the surrounding holes after the blasting success. The results show that the application of slotting tube obtains four more cut contours than the case without it. Finally we did full-section control and non-control blasting comparative experiment, the results show that the rates of half-hole marks and the non-smooth grades of the cut contours can reach 95%, hole spacing is expanded to larger than 550 mm, and 550 mm is the best under the K2 limestone conditions.
文摘Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanism of cool tower collapse through selecting blasting parameters and selecting gap form, gap size and gap angle. The cool tower was twisted, collapsed directionally and broken well according to the design requirements. The expected results and purposes of blasting were obtained with no back blow, total blasted pile approximates to 4 - 5 m, no occurrence of flying stones and no damage to fixed buildings and equipment, the large-sized hyperbolic thin-wall reinforced concrete cool towers are twisted during blasting and it collapses well with good breaking. The test and measurement of blasting vibrating velocity was carried out during blasting and the measuring results are much less than critical values specified by Safety Regulations for Blasting. The study shows that gap form, gap size and gap angle are the key factors to cool tower collapse and will give beneficial references to related theoretical study and field application.
基金Project(2010CB732004) supported by the National Basic Research Program of ChinaProject(50490274) supported by the National Natural Science Foundation of China
文摘The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.
基金Project(42177143) supported by the National Natural Science Foundation of ChinaProject(2020JDJQ0011) supported by the Science Foundation for Distinguished Young Scholars of Sichuan Province,China。
文摘Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.
文摘Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.
文摘Precision blasting,which is different from traditional control blasting,is regarded as the sign of new development stage of engineering blasting.The definition,connotation,technology system and current situation of its application and development were described briefly.With regard to the prospect of precision blasting,following aspects for further study are recommended:a.A multiple disciplinary study should be developed for a more understanding on the explosive energy release and quantitative blasting design;b.according to the requirements of digital blasting objective,syncretic study of precision blasting and technology should be enhanced;c.numerical simulation was an important tool for optimizing engineering blasting scheme and blasting harmful effects control,a more elaborate precision numerical simulation method should be studied furthermore;d.the modernization and standardization of precision blasting construction should be enhanced.
基金Supported by the National Natural Science Foundation of China (1100202 l) the Doctoral Subject Foundation of the Ministry of Education of China (20070008012) the National High Technology Research and Development Program (2008AA062104)
文摘Major mineral hazard identifications should consider perilous types of fatal accidents in collieries from its definition, and then set existent hazardous objects and their relevant amount as referenced factors. Eliminating hazards in systems and decreasing risks are their essential purposes with help of hazard identification, risk evaluation and management. By pre-control on major hazards, fatal accidents are avoided, stuffs' safety and healthy are protected, levels of safe management are enhanced, and perpetual systems are built up finally. However, choosing the proper identification and evaluation is a problem all along. Based on specific condition in Jiangou Coal Mine, method of LEC was applied for hazard identification and evaluation in the pre-blasting process within horizontal section top-coal mechanized caving of steep seams. And control measures to of each hazard were put forward. The identification method combining qualitative and quantitative analysis. So, it is practical and operable for the method to develop the given scientific research and has a distinctive impact on high efficiency and safety products for pre-blasting in horizontal section top-coal mechanized caving of steep seams.
基金Foundation items: National Science Fund for Distinguished Young Scholars, China (No. 51125037) Natio- nal Basic Research Program of China (No. 2011CB013501) National Natural Science Foundation of China (No. 51279135)
文摘Rational rock-explosive matching is of great importance to enhancing explosive energy effective utilization and improving rock fragmentation effect.The traditionally emphasized method of acoustic impedance matching is not rational.Based on blasting breakage mechanism,a new theory of rock-explosive matching in drilling and blasting is proposed.The new approach chooses explosive parameters by reasonable control of the size of crushed zone under the condition of fully fragmentation between adjacent blast holes.This method can directly reflect the blasting fragmentation effect and energy effective utilization,which is easy to implement.Also,a modified model is developed,taken adjacent blast hole blasting loading into account.As a result,explosive parameters of different grades of rock are given in full coupling on-site mixed explosive charge for different project objectives.
基金National Natural Science Foundation of China (No. 51304087) Foundation Projects of Yun- nan Province (No. KKSY201404056, No. KKSA201121083)
文摘The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mines,and the average boulder yield was as high as 22.7%.In order to develop the mine production efficiency,the circular medium-length hole blasting technology was proposed and field tests were carried out.The test results showed that circular medium-length hole blasting mining can reduce the average boulder yield to 10.3%.Compared with the traditional scalloped medium-length hole blasting mining,the average boulder yield was decreased by 12.4%.The daily yield of ore for the panel on duty was increased by 152.29 t,and the growth rate was 51.1%.The new technology can reduce the time for the handling of boulder and the consumption of explosives and detonators for recrushing,and increase the efficiency of mining while reduce the mining cost,which has received good blasting effects.