Allyl 4-O-{3-deoxy-3-[4-benzylaminocarbonyl-1H-(1,2,3)-triazol-1-yl]-β-D-galactopyranosyl}-2-deoxy-2-acetamido- β-D-glucopyranoside, a potential inhibitor of galectin-3, was designed and synthesized using lactose ...Allyl 4-O-{3-deoxy-3-[4-benzylaminocarbonyl-1H-(1,2,3)-triazol-1-yl]-β-D-galactopyranosyl}-2-deoxy-2-acetamido- β-D-glucopyranoside, a potential inhibitor of galectin-3, was designed and synthesized using lactose as stating material. The modifications of lactose included in introducing of N-acetamino group at the C-2 position through an azidoiodoglycosylation meanwhile constructing the [3-aminolactoside stereoselectively and replacing 3'-OH with substituent 1,2,3-triazolyl group to enhance the affinity toward galeetin-3.展开更多
Stable sub 500 nm bovine serum albumin (BSA) microsphere suspensions were produced by controlled addition of acetone and ethanol to an aqueous solution of BSA, followed by stabilization process of the formed microsphe...Stable sub 500 nm bovine serum albumin (BSA) microsphere suspensions were produced by controlled addition of acetone and ethanol to an aqueous solution of BSA, followed by stabilization process of the formed microspheres at an elevated temperature. Microspheres produced by this acetone ethanol heat denaturation method were stabilized at relatively low temperatures (70~75℃) over a short period of time (20 min). The acetone ethanol heat denaturation method, in comparison with the traditional oil/ water technique for preparation of albumin microspheres, which requires high temperature (over 100℃) and longer heating time (more than 30 min) for stabilization, offers a number of advantages. This report describes the influence of process conditions, such as ratios of acetone to ethanol to BSA aqueous solution, heating time and heating temperature, on microsphere formation and their stability. A loading efficiency of 40% rose bengal was achieved. Rose bengal release rates from these microspheres in phosphate buffered saline medium at 37 ℃ were dependent on microsphere stabilities and 25% to 60% of initial loading drug were released in 15 days.展开更多
The objective of this work is to develop an automation system for quality control (QC) in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding (LBW). These sources, also ...The objective of this work is to develop an automation system for quality control (QC) in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding (LBW). These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of lodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller (PLC), step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices (GMP). Nowadays, the Radiation Technology Centre at IPEN-CNEN/SP imports and distributes 36,000 lodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 lodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil.展开更多
A copper antimony iodide rudorffite,Cu3SbI6, was first prepared by using a low-temperature solution-pro- cessing approach.Its film absorbs 320-520nm fight and has an indirect bandgap of 2.43eV.Solar cells with a struc...A copper antimony iodide rudorffite,Cu3SbI6, was first prepared by using a low-temperature solution-pro- cessing approach.Its film absorbs 320-520nm fight and has an indirect bandgap of 2.43eV.Solar cells with a structure of ITO/PEDOT:PSS/CusSbIJPC6~BM/AI were made,giving a power conversion efficiency of 0.50%and a fill factor of 67.09%.展开更多
基金National Natural Science Foundation of China(Grant No.20732001 and 90713004).
文摘Allyl 4-O-{3-deoxy-3-[4-benzylaminocarbonyl-1H-(1,2,3)-triazol-1-yl]-β-D-galactopyranosyl}-2-deoxy-2-acetamido- β-D-glucopyranoside, a potential inhibitor of galectin-3, was designed and synthesized using lactose as stating material. The modifications of lactose included in introducing of N-acetamino group at the C-2 position through an azidoiodoglycosylation meanwhile constructing the [3-aminolactoside stereoselectively and replacing 3'-OH with substituent 1,2,3-triazolyl group to enhance the affinity toward galeetin-3.
文摘Stable sub 500 nm bovine serum albumin (BSA) microsphere suspensions were produced by controlled addition of acetone and ethanol to an aqueous solution of BSA, followed by stabilization process of the formed microspheres at an elevated temperature. Microspheres produced by this acetone ethanol heat denaturation method were stabilized at relatively low temperatures (70~75℃) over a short period of time (20 min). The acetone ethanol heat denaturation method, in comparison with the traditional oil/ water technique for preparation of albumin microspheres, which requires high temperature (over 100℃) and longer heating time (more than 30 min) for stabilization, offers a number of advantages. This report describes the influence of process conditions, such as ratios of acetone to ethanol to BSA aqueous solution, heating time and heating temperature, on microsphere formation and their stability. A loading efficiency of 40% rose bengal was achieved. Rose bengal release rates from these microspheres in phosphate buffered saline medium at 37 ℃ were dependent on microsphere stabilities and 25% to 60% of initial loading drug were released in 15 days.
文摘The objective of this work is to develop an automation system for quality control (QC) in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding (LBW). These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of lodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller (PLC), step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices (GMP). Nowadays, the Radiation Technology Centre at IPEN-CNEN/SP imports and distributes 36,000 lodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 lodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil.
基金the National Natural Science Foundation of China (U1401244, 51773045, 21572041, 21772030, 51503050 and 21704021)the National Key Research and Development Program of China (2017YFA0206600) for financial support
文摘A copper antimony iodide rudorffite,Cu3SbI6, was first prepared by using a low-temperature solution-pro- cessing approach.Its film absorbs 320-520nm fight and has an indirect bandgap of 2.43eV.Solar cells with a structure of ITO/PEDOT:PSS/CusSbIJPC6~BM/AI were made,giving a power conversion efficiency of 0.50%and a fill factor of 67.09%.