Inhibin a is one of the candidate genes that control the ovulation in poultry. To study the genetic effects of inhibin a on apoptosis and proliferation of goose granulosa cells cultured in vitro, two RNA interference ...Inhibin a is one of the candidate genes that control the ovulation in poultry. To study the genetic effects of inhibin a on apoptosis and proliferation of goose granulosa cells cultured in vitro, two RNA interference (RNAi) expression vectors, psiRNA-INHal and psiRNA-INHα2, were constructed to knock down inhibin α gene expression. After 48 h of transfection, the efficiency of these two RNAi expression vectors was examined by fluorescence microscopy. Meanwhile, inhibin protein expression levels, apoptosis indexes (AI) and proliferation indexes (PI) of granulosa cells were analyzed by flow cytometry. In addition, the supernatants were collected to assay the concentrations of estrogen (E2) and progesterone (P) by radioimmunoassay. The results showed that the expression level of inhibin a in the RNAi group were decreased 30%--40% than those in the control groups (P 〈0.05) and the apoptosis indexes and proliferation indexes in the RNAi groups were significantly higher than those in the control groups (P 〈0.05). However, the E2 concentrations in the RNAi groups were lower than those in the control groups (P 〈0.05). These results indicate that inhibin a has antagonistic effect on granulosa cell apoptosis.展开更多
Most conventional robust design methods assume design solutions are fixed values. Using these methods, designers set each control factor to a fixed value to maximize the robustness of objective characteristics. Howeve...Most conventional robust design methods assume design solutions are fixed values. Using these methods, designers set each control factor to a fixed value to maximize the robustness of objective characteristics. However, fluctuations in the objective characteristic often exceed the allowable range in a design problem. Consequently, it is difficult to obtain sufficient robustness using conventional methods. This research defines adjustable control factors whose values can be adjusted within a given range to increase robustness and proposes a method to calculate robustness, including factors to adjust the objective characteristic and derive optimum ranges of the factors. The robustness index, which indicates the feasibility that the objective characteristic values are within the tolerance by the adjustment, is calculated by the Monte Carlo method, while the range of adjustable control factors is optimized using the Vector evaluated particle swarm optimization. Finally, an engineering example is presented to demonstrate the applicability of the proposed method.展开更多
This study aimed to investigate the effects of different process parameters on the physical properties, in vitro dissolution rate, and short and long-term stability of diclofenac potassium(DFP) granules and capsules...This study aimed to investigate the effects of different process parameters on the physical properties, in vitro dissolution rate, and short and long-term stability of diclofenac potassium(DFP) granules and capsules. DFP granules exhibited low total amounts of impurities when prepared through the wet granulation method using a granulating solvent with a low water/ethanol ratio. The impurities of the wet DFP mass dried at 70 ℃ were higher than those dried at 50 ℃ or 60 ℃. DFP granules were stable under strong light exposure during preparation. DFP granules prepared using a granulating solvent with a 1:4 water/ethanol ratio had a relatively smaller particle size and higher angle of repose than those prepared using granulating solvents with other water/ethanol ratios. The dissolution rate of DFP capsules prepared using four different water/ethanol ratios was less than 2% after 10 min of dissolution and increased to 95% within 30 min of dissolution. The total amount of drug impurities of DFP capsules prepared using a granulating solvent with 1:4 water/ethanol ratio was considerably lower than those of DFP capsules prepared using a granulating solvent with a 1:0 water/ethanol solvent ratio. Regardless of the water/ethanol ratio, the capsules showed poor stability when exposed to high temperature(60 ℃) and strong light(4500±500 Lux) for 10 days, but were relatively stable at high humidity(92.5% RH). The results of the long-term stability(25±2 ℃ and 60%±10% relative humidity) study showed that DFP granules were more stable than DFP capsules, and were stable for 12 months. The type of encapsulating material did not affect the 2-month stability of DFP. DFP granules are sensitive to granulating solvent and drying temperature and DFP capsules should be stored away from high temperature and strong light.展开更多
基金the National Natural Science Foundation of China (No. 30300253) and Wuhan Chenguang Science and Technology Project (No. 20065004116-25).
文摘Inhibin a is one of the candidate genes that control the ovulation in poultry. To study the genetic effects of inhibin a on apoptosis and proliferation of goose granulosa cells cultured in vitro, two RNA interference (RNAi) expression vectors, psiRNA-INHal and psiRNA-INHα2, were constructed to knock down inhibin α gene expression. After 48 h of transfection, the efficiency of these two RNAi expression vectors was examined by fluorescence microscopy. Meanwhile, inhibin protein expression levels, apoptosis indexes (AI) and proliferation indexes (PI) of granulosa cells were analyzed by flow cytometry. In addition, the supernatants were collected to assay the concentrations of estrogen (E2) and progesterone (P) by radioimmunoassay. The results showed that the expression level of inhibin a in the RNAi group were decreased 30%--40% than those in the control groups (P 〈0.05) and the apoptosis indexes and proliferation indexes in the RNAi groups were significantly higher than those in the control groups (P 〈0.05). However, the E2 concentrations in the RNAi groups were lower than those in the control groups (P 〈0.05). These results indicate that inhibin a has antagonistic effect on granulosa cell apoptosis.
文摘Most conventional robust design methods assume design solutions are fixed values. Using these methods, designers set each control factor to a fixed value to maximize the robustness of objective characteristics. However, fluctuations in the objective characteristic often exceed the allowable range in a design problem. Consequently, it is difficult to obtain sufficient robustness using conventional methods. This research defines adjustable control factors whose values can be adjusted within a given range to increase robustness and proposes a method to calculate robustness, including factors to adjust the objective characteristic and derive optimum ranges of the factors. The robustness index, which indicates the feasibility that the objective characteristic values are within the tolerance by the adjustment, is calculated by the Monte Carlo method, while the range of adjustable control factors is optimized using the Vector evaluated particle swarm optimization. Finally, an engineering example is presented to demonstrate the applicability of the proposed method.
基金National Natural Science Foundation of China(Grant No.81373333,81311140267)
文摘This study aimed to investigate the effects of different process parameters on the physical properties, in vitro dissolution rate, and short and long-term stability of diclofenac potassium(DFP) granules and capsules. DFP granules exhibited low total amounts of impurities when prepared through the wet granulation method using a granulating solvent with a low water/ethanol ratio. The impurities of the wet DFP mass dried at 70 ℃ were higher than those dried at 50 ℃ or 60 ℃. DFP granules were stable under strong light exposure during preparation. DFP granules prepared using a granulating solvent with a 1:4 water/ethanol ratio had a relatively smaller particle size and higher angle of repose than those prepared using granulating solvents with other water/ethanol ratios. The dissolution rate of DFP capsules prepared using four different water/ethanol ratios was less than 2% after 10 min of dissolution and increased to 95% within 30 min of dissolution. The total amount of drug impurities of DFP capsules prepared using a granulating solvent with 1:4 water/ethanol ratio was considerably lower than those of DFP capsules prepared using a granulating solvent with a 1:0 water/ethanol solvent ratio. Regardless of the water/ethanol ratio, the capsules showed poor stability when exposed to high temperature(60 ℃) and strong light(4500±500 Lux) for 10 days, but were relatively stable at high humidity(92.5% RH). The results of the long-term stability(25±2 ℃ and 60%±10% relative humidity) study showed that DFP granules were more stable than DFP capsules, and were stable for 12 months. The type of encapsulating material did not affect the 2-month stability of DFP. DFP granules are sensitive to granulating solvent and drying temperature and DFP capsules should be stored away from high temperature and strong light.