针对云制造服务组合问题中广泛存在的不确定性,研究了一种基于服务质量(Quality of Service, QoS)感知的云制造服务组合区间多目标优化方法。该方法采用区间数来描述QoS属性的不确定性,考虑相邻子任务间的联结关系,构建以服务时间、服...针对云制造服务组合问题中广泛存在的不确定性,研究了一种基于服务质量(Quality of Service, QoS)感知的云制造服务组合区间多目标优化方法。该方法采用区间数来描述QoS属性的不确定性,考虑相邻子任务间的联结关系,构建以服务时间、服务成本和评价质量等QoS属性为优化目标的服务组合区间多目标优化模型,以微型多目标遗传算法为框架,引入佳点集改善初始种群,利用区间非支配分级方法,实现了对云制造服务组合区间多目标优化问题的直接求解,其求解效率也在工程示例中得到了验证。展开更多
为了使云制造资源更加有效地分配到各个制造任务中,提出了一种动态参数蚁群算法(Dynamic Parameter Ant Colony Optimization,DPACO)。该算法建立在QoS(Quality of Service)评估模型之上,QoS评估模型通过综合成本C(Cost)、时间T(Time)...为了使云制造资源更加有效地分配到各个制造任务中,提出了一种动态参数蚁群算法(Dynamic Parameter Ant Colony Optimization,DPACO)。该算法建立在QoS(Quality of Service)评估模型之上,QoS评估模型通过综合成本C(Cost)、时间T(Time)、质量函数Q(Quality function)和满意度S(Satisfaction)四个方面得到适应度函数F,F越小结果越优。DPACO算法通过改变参数在不同阶段的值来使算法获得更快的收敛效率,加入特殊蚂蚁使得算法更好地跳出局部最优解获得全局最优解。最后通过钢铁锻造任务的云制造资源优选将DPACO算法与原始ACO、PSO、DE算法作比较,实验结果表明,DPACO算法在求解云制造服务组合问题上能够更好地获得全局最优解,并具有较高的收敛效率。展开更多
以往云制造服务组合(Cloud manufacturing service composition,CMSC)优化是在制造服务少异常或约束的条件下进行的,这使得现有模型及方法无法适用于多种实际约束下的云制造服务组合优化,更无法在其执行过程出现服务异常时,对CMSC原执...以往云制造服务组合(Cloud manufacturing service composition,CMSC)优化是在制造服务少异常或约束的条件下进行的,这使得现有模型及方法无法适用于多种实际约束下的云制造服务组合优化,更无法在其执行过程出现服务异常时,对CMSC原执行路径进行自适应重构调整。为此,考虑云制造服务组合执行过程中不可忽视的原始CMSC执行路径强制时间约束、制造服务占用时间约束和制造服务强耦合约束,以CMSC的加工质量、成本、服务质量为优化目标,提出一种制造云服务出现异常时实际约束下的服务组合自适应重构调整模型(Cloud manufacturing service composition adaptive reconfiguration,CMSCAR)。为求解该模型,在详细分析所求问题的本质特征的基础上,集成多种优化策略,提出一种基于哈里斯鹰优化算法的服务组合动态重构算法(Service composition dynamic reconfiguration harris hawks optimization,SCDRHHO)。数值算例和应用案例表明,相比粒子群算法(Particle swarm optimization,PSO)、灰狼优化算法(Grey wolf optimizer,GWO)和蝠鲼觅食优化算法(Manta ray foraging optimization,MRFO)等对比算法,所提出的SCDRHHO能够在制造云服务异常出现时在多约束下对正在执行的服务组合进行高效地自适应重构调整,提高了云制造服务组合执行的鲁棒性。展开更多
In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-...In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-population searches in fixed spaces and insufficient information exchange.In this paper,we introduce an improved Sparrow Search Algorithm(ISSA)to address these issues.The fixed solution space is divided into multiple subspaces,allowing for parallel searches that expedite the discovery of target solutions.To enhance search efficiency within these subspaces and significantly improve population diversity,we employ multiple group evolution mechanisms and chaotic perturbation strategies.Furthermore,we incorporate adaptive weights and a global capture strategy based on the golden sine to guide individual discoverers more effectively.Finally,differential Cauchy mutation perturbation is utilized during sparrow position updates to strengthen the algorithm's global optimization capabilities.Simulation experiments on benchmark problems and service composition optimization problems show that the ISSA delivers superior optimization accuracy and convergence stability compared to other methods.These results demonstrate that our approach effectively balances global and local search abilities,leading to enhanced performance in cloud manufacturing service composition.展开更多
文摘针对云制造服务组合问题中广泛存在的不确定性,研究了一种基于服务质量(Quality of Service, QoS)感知的云制造服务组合区间多目标优化方法。该方法采用区间数来描述QoS属性的不确定性,考虑相邻子任务间的联结关系,构建以服务时间、服务成本和评价质量等QoS属性为优化目标的服务组合区间多目标优化模型,以微型多目标遗传算法为框架,引入佳点集改善初始种群,利用区间非支配分级方法,实现了对云制造服务组合区间多目标优化问题的直接求解,其求解效率也在工程示例中得到了验证。
文摘为了使云制造资源更加有效地分配到各个制造任务中,提出了一种动态参数蚁群算法(Dynamic Parameter Ant Colony Optimization,DPACO)。该算法建立在QoS(Quality of Service)评估模型之上,QoS评估模型通过综合成本C(Cost)、时间T(Time)、质量函数Q(Quality function)和满意度S(Satisfaction)四个方面得到适应度函数F,F越小结果越优。DPACO算法通过改变参数在不同阶段的值来使算法获得更快的收敛效率,加入特殊蚂蚁使得算法更好地跳出局部最优解获得全局最优解。最后通过钢铁锻造任务的云制造资源优选将DPACO算法与原始ACO、PSO、DE算法作比较,实验结果表明,DPACO算法在求解云制造服务组合问题上能够更好地获得全局最优解,并具有较高的收敛效率。
基金Supported by the National Natural Science Foundation of China(62272214)。
文摘In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-population searches in fixed spaces and insufficient information exchange.In this paper,we introduce an improved Sparrow Search Algorithm(ISSA)to address these issues.The fixed solution space is divided into multiple subspaces,allowing for parallel searches that expedite the discovery of target solutions.To enhance search efficiency within these subspaces and significantly improve population diversity,we employ multiple group evolution mechanisms and chaotic perturbation strategies.Furthermore,we incorporate adaptive weights and a global capture strategy based on the golden sine to guide individual discoverers more effectively.Finally,differential Cauchy mutation perturbation is utilized during sparrow position updates to strengthen the algorithm's global optimization capabilities.Simulation experiments on benchmark problems and service composition optimization problems show that the ISSA delivers superior optimization accuracy and convergence stability compared to other methods.These results demonstrate that our approach effectively balances global and local search abilities,leading to enhanced performance in cloud manufacturing service composition.