Many articles have been published on intelligent manufacturing, most of which focus on hardware, soft-ware, additive manufacturing, robotics, the Internet of Things, and Industry 4.0. This paper provides a dif-ferent ...Many articles have been published on intelligent manufacturing, most of which focus on hardware, soft-ware, additive manufacturing, robotics, the Internet of Things, and Industry 4.0. This paper provides a dif-ferent perspective by examining relevant challenges and providing examples of some less-talked-about yet essential topics, such as hybrid systems, redefining advanced manufacturing, basic building blocks of new manufacturing, ecosystem readiness, and technology scalahility. The first major challenge is to (re-)define what the manufacturing of the future will he, if we wish to: ① raise public awareness of new manufacturing's economic and societal impacts, and ② garner the unequivocal support of policy- makers. The second major challenge is to recognize that manufacturing in the future will consist of sys-tems of hybrid systems of human and robotic operators; additive and suhtractive processes; metal and composite materials; and cyher and physical systems. Therefore, studying the interfaces between con- stituencies and standards becomes important and essential. The third challenge is to develop a common framework in which the technology, manufacturing business case, and ecosystem readiness can he eval- uated concurrently in order to shorten the time it takes for products to reach customers. Integral to this is having accepted measures of "scalahility" of non-information technologies. The last, hut not least, chal-lenge is to examine successful modalities of industry-academia-government collaborations through public-private partnerships. This article discusses these challenges in detail.展开更多
The passive anti-rolling tank is one of important ship stabilizers widely used today. But at present, research of the tank is most aimed at its rolling movement. In this paper, the influence of sway motion on the pass...The passive anti-rolling tank is one of important ship stabilizers widely used today. But at present, research of the tank is most aimed at its rolling movement. In this paper, the influence of sway motion on the passive anti-rolling tank is considered, the mathematical model of "ship-passive antl-rolling tank" system coupled with sway motion is developed basing on the U-shaped passive anti-rolling tank theory. Both simulation results and experimental data indicate that it is necessary to consider the influence of sway motion on the anti-rolling tank, which is more agreeable to the actual circumstance.展开更多
Equipment manufacturing industry is an important symbol to measure the industrial strength, scientific and technological innovation ability and international competitiveness of a country or region. Firstly, this paper...Equipment manufacturing industry is an important symbol to measure the industrial strength, scientific and technological innovation ability and international competitiveness of a country or region. Firstly, this paper analyzes the development status of equipment manufacturing industry in Shanghai, and then uses DEA to analyze the efficiency of technology innovation capability of equipment manufacturing industry in Shanghai. The results show that the equipment manufacturing industry in Shanghai has stronger overall drawing ability, and besides, the technology innovation ability of the transportation equipment manufacturing industry is weak, other equipment manufacturing sub industries have relatively strong ability of technological innovation. This paper analyzes the shortcomings of the transportation equipment manufacturing industry and gives guidance and puts forward corresponding suggestions and measures.展开更多
文摘Many articles have been published on intelligent manufacturing, most of which focus on hardware, soft-ware, additive manufacturing, robotics, the Internet of Things, and Industry 4.0. This paper provides a dif-ferent perspective by examining relevant challenges and providing examples of some less-talked-about yet essential topics, such as hybrid systems, redefining advanced manufacturing, basic building blocks of new manufacturing, ecosystem readiness, and technology scalahility. The first major challenge is to (re-)define what the manufacturing of the future will he, if we wish to: ① raise public awareness of new manufacturing's economic and societal impacts, and ② garner the unequivocal support of policy- makers. The second major challenge is to recognize that manufacturing in the future will consist of sys-tems of hybrid systems of human and robotic operators; additive and suhtractive processes; metal and composite materials; and cyher and physical systems. Therefore, studying the interfaces between con- stituencies and standards becomes important and essential. The third challenge is to develop a common framework in which the technology, manufacturing business case, and ecosystem readiness can he eval- uated concurrently in order to shorten the time it takes for products to reach customers. Integral to this is having accepted measures of "scalahility" of non-information technologies. The last, hut not least, chal-lenge is to examine successful modalities of industry-academia-government collaborations through public-private partnerships. This article discusses these challenges in detail.
文摘The passive anti-rolling tank is one of important ship stabilizers widely used today. But at present, research of the tank is most aimed at its rolling movement. In this paper, the influence of sway motion on the passive anti-rolling tank is considered, the mathematical model of "ship-passive antl-rolling tank" system coupled with sway motion is developed basing on the U-shaped passive anti-rolling tank theory. Both simulation results and experimental data indicate that it is necessary to consider the influence of sway motion on the anti-rolling tank, which is more agreeable to the actual circumstance.
文摘Equipment manufacturing industry is an important symbol to measure the industrial strength, scientific and technological innovation ability and international competitiveness of a country or region. Firstly, this paper analyzes the development status of equipment manufacturing industry in Shanghai, and then uses DEA to analyze the efficiency of technology innovation capability of equipment manufacturing industry in Shanghai. The results show that the equipment manufacturing industry in Shanghai has stronger overall drawing ability, and besides, the technology innovation ability of the transportation equipment manufacturing industry is weak, other equipment manufacturing sub industries have relatively strong ability of technological innovation. This paper analyzes the shortcomings of the transportation equipment manufacturing industry and gives guidance and puts forward corresponding suggestions and measures.