A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation a...A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation at 35℃, an initial biomass of 17.74 g·L^-1 and hydraulic retention time (HRT) of 6 h, the CSTR reactor presented a continuous hydrogen production ability of 5.9 L·d^-1 and the biogas was free of methane throughout the experiment. Dissolved fermehtation products were predominated by ethanol and acetate acid, with smaller quantities of propionic acid, butyric acid and valeric acid. It was found that GAC could make the immobilized system durable and stable in response to organic load impacting and low pH value. When the organic loading rate (OLR) ranged from 8 kgCOD/(m^3d) to 4 kgCOD/(m^3d), stable ethanol-type fermentation was formed, and the ethanol and acetate concentrations account for 89% of the total liquid products.展开更多
[Objective] For preparing the biopesticide of Bacillus subtilis B579 with high spore concentration,the sporulation conditions were optimized.[Method] Two-step fermentation control strategy was used,in which,the first ...[Objective] For preparing the biopesticide of Bacillus subtilis B579 with high spore concentration,the sporulation conditions were optimized.[Method] Two-step fermentation control strategy was used,in which,the first phase(0-10 h)was to improve cell growth,and the second phase(10-30 h)was to promote spore formation.Four factors including initial glucose concentration,fermentation pH,temperature(in the second phase)and shaking speed(in the second phase)were optimized using the methods of single factor test and orthogonal experiment.[Result] The initial glucose concentration showed a significant effect on sporulation.The optimal conditions for the spore formation of B.subtilis B579 were as follows:initial glucose concentration 5 g/L,fermentation pH 7.0,the temperature for the first phase 37 ℃,and the shaking speed for the first phase 180 r/min,the temperature for the second phase 40 ℃,and the shaking speed for the second phase 200 r/min;in addition,the first phase was 10 h and the second phase of fermentation was conducted for 30 h.Under such conditions,the spore concentration and spore formation rate could reach 9.43×108 CFU/ml and 90.99%,respectively,which represented 6.70-fold and 2.43-fold increase compared with those before optimization.[Conclusion] The spores concentration of biocontrol agent was improved using two-step control strategy,which provided the basis for biopesticide production in large scale.展开更多
[Objective] The research aimed to search and obtain the fermentation method of hyaluronic acid with the high yield.[Method] In the production process of hyaluronic acid by the microbial fermentation method,the influen...[Objective] The research aimed to search and obtain the fermentation method of hyaluronic acid with the high yield.[Method] In the production process of hyaluronic acid by the microbial fermentation method,the influence of substrate concentration on the fermentation was explored.[Result] The glucose had the biggest influence on the hyaluronic acid fermentation.The low concentration of glucose only could synthetize a little bacteria and hyaluronic acid,and the high concentration of glucose could inhibit the growth of bacteria and the formation of hyaluronic acid.Via the exploratory experiment,the fed-batch fermentation could disarm the substrate inhibition.The concrete method was adding 2% glucose before the start of fermentation,and adding 2% glucose at the 14th hour of fermentation,and adding 2% glucose again at the 22nd hour of fermentation.[Conclusion] In the microbial fermentation process,the fed-batch fermentation could disarm the substrate inhibition and obtain the hyaluronic acid with the larger relative molecular mass and the higher yield.展开更多
The self-made mobile fermentation bag for spent white Hypsizygus marmoreus substrate was developed, and the relevant fermentation process was studied. The results showed that under the condition of single addition of ...The self-made mobile fermentation bag for spent white Hypsizygus marmoreus substrate was developed, and the relevant fermentation process was studied. The results showed that under the condition of single addition of Lactobacillus,nitrogen-free extract was degraded into lactic acid, leading to decreased pH value.On day 10, the fermentation effect reached the best with Lactobacillus abundance of 5.12×10~7/ml, lactic acid content of 0.48% and strong acid flavor. At this time, the fermentation material was moist without mildew and agglomeration, and was suitable for livestock and poultry. However, after 10 days, undesirable acids and mildew generated, a large amount of lactic acid bacteria died, and the fermentation material turned black and agglomerated, and became unsuitable for feeding livestock and poultry. Throughout the fermentation process, the pH value first decreased continuously until to 4.0, and then remained stable. During the fermentation of spent white H. marmoreus substrate, the nitrogen-free extract and crude fiber contents decreased, the crude protein content increased, while other indicators remained unchanged.展开更多
To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an elec...To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-fl-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring AP/APHB and ANO2 -N/APHB is more necessary than monitoring AP/ACOD, ANO2 -N/ACOD, or AP / ANO2 -N.展开更多
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathe...This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.展开更多
The objective of this work is to investigate the fermentation capacity and metabolic characteristics of a novel strain of bacteria B49 isolated from anaerobic activated sludge. The examination was conducted in batch c...The objective of this work is to investigate the fermentation capacity and metabolic characteristics of a novel strain of bacteria B49 isolated from anaerobic activated sludge. The examination was conducted in batch culture at 35 ℃. The results showed that the carbon flow gave priority to the production of ethanol, and yield of ethanol is always greater than that of acetic acid. The hydrogen and ethanol occurred simultaneously. The exponential phase of the B49's cell growth was from 12 to 22 h. Evolution of hydrogen appeared to start after the exponential phase of cell growth and reach maximum production at the early stationary phase. The rate of hydrogen production reached a maximum of 16.8 mL/h, and the percentage of hydrogen gas in the headspace of serum bottle obtained a maximum of 41 % at 22 h. The B49 was able to grow using molasses as substrate for cell growth. When the molasses was used as substrate, maximum yield of hydrogen was obtained 2460 mL/L culture at 2 % (V/V) of molasses. The hydrogen yield was increased to 3060 mL/L culture after addition of 0.5 g/L of yeast extract in the molasses medium and the yield of hydrogen was increased by 24.4%.展开更多
An optimal control strategy is proposed to improve the fermentation titer,which combines the support vector machine(SVM)with real code genetic algorithm(RGA).A prediction model is established with SVM for penicillin f...An optimal control strategy is proposed to improve the fermentation titer,which combines the support vector machine(SVM)with real code genetic algorithm(RGA).A prediction model is established with SVM for penicillin fermentation processes,and it is used in RGA for fitting function.A control pattern is proposed to overcome the coupling problem of fermentation parameters,which describes the overall production condition.Experimental results show that the optimal control strategy improves the penicillin titer of the fermentation process by 22.88%,compared with the routine operation.展开更多
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fix...Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.展开更多
Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both h...Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast (Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15 (Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well- characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins, which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest. Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.展开更多
AIM:To examine if dietary and socio-economic factors contribute to Helicobacter pylori(H pylori)re-infection. METHODS:The population of patients consisted of subjects in whom H pylori infection had been successfully t...AIM:To examine if dietary and socio-economic factors contribute to Helicobacter pylori(H pylori)re-infection. METHODS:The population of patients consisted of subjects in whom H pylori infection had been successfully treated in the past.Patients were divided into two groups:Ⅰ-examined group(111 persons with H pylori re-infection)andⅡ-control group(175 persons who had not been re-infected).The respondents were interviewed retrospectively on their dietary habits and socio-economic factors. RESULTS:A statistically significant lower frequency of fermented dairy products(P<0.0001),vegetables (P=0.02),and fruit(P=0.008)consumption was noted among patients with H pylori re-infection as compared to those who had not been re-infected. CONCLUSION:High dietary intake of probiotic bacteria,mainly Lactobacillus,and antioxidants,mainly vitamin C(contained in fruit and vegetables),might decrease the risk of H pylori re-infection.展开更多
On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta...On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.展开更多
基金supported by the National Hi-Tech R&D Program (863 Program)Ministry of Science&Technology, China (Grant No. 2006AA05Z109)+1 种基金Shanghai Science and Technology Bureau (Grant No.071605122)Educated programme of excellent doctor of Southeast Forestry University (GRAP09)
文摘A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation at 35℃, an initial biomass of 17.74 g·L^-1 and hydraulic retention time (HRT) of 6 h, the CSTR reactor presented a continuous hydrogen production ability of 5.9 L·d^-1 and the biogas was free of methane throughout the experiment. Dissolved fermehtation products were predominated by ethanol and acetate acid, with smaller quantities of propionic acid, butyric acid and valeric acid. It was found that GAC could make the immobilized system durable and stable in response to organic load impacting and low pH value. When the organic loading rate (OLR) ranged from 8 kgCOD/(m^3d) to 4 kgCOD/(m^3d), stable ethanol-type fermentation was formed, and the ethanol and acetate concentrations account for 89% of the total liquid products.
基金Supported by the Natural Science Foundation of Tianjin(09JCZDJC19100)Scientific Research Fund of Tianjin Scienceand Technology University(20090403)~~
文摘[Objective] For preparing the biopesticide of Bacillus subtilis B579 with high spore concentration,the sporulation conditions were optimized.[Method] Two-step fermentation control strategy was used,in which,the first phase(0-10 h)was to improve cell growth,and the second phase(10-30 h)was to promote spore formation.Four factors including initial glucose concentration,fermentation pH,temperature(in the second phase)and shaking speed(in the second phase)were optimized using the methods of single factor test and orthogonal experiment.[Result] The initial glucose concentration showed a significant effect on sporulation.The optimal conditions for the spore formation of B.subtilis B579 were as follows:initial glucose concentration 5 g/L,fermentation pH 7.0,the temperature for the first phase 37 ℃,and the shaking speed for the first phase 180 r/min,the temperature for the second phase 40 ℃,and the shaking speed for the second phase 200 r/min;in addition,the first phase was 10 h and the second phase of fermentation was conducted for 30 h.Under such conditions,the spore concentration and spore formation rate could reach 9.43×108 CFU/ml and 90.99%,respectively,which represented 6.70-fold and 2.43-fold increase compared with those before optimization.[Conclusion] The spores concentration of biocontrol agent was improved using two-step control strategy,which provided the basis for biopesticide production in large scale.
基金Supported by Ningxia Science and Technology Research PlanningItem(NXGG2009-4)~~
文摘[Objective] The research aimed to search and obtain the fermentation method of hyaluronic acid with the high yield.[Method] In the production process of hyaluronic acid by the microbial fermentation method,the influence of substrate concentration on the fermentation was explored.[Result] The glucose had the biggest influence on the hyaluronic acid fermentation.The low concentration of glucose only could synthetize a little bacteria and hyaluronic acid,and the high concentration of glucose could inhibit the growth of bacteria and the formation of hyaluronic acid.Via the exploratory experiment,the fed-batch fermentation could disarm the substrate inhibition.The concrete method was adding 2% glucose before the start of fermentation,and adding 2% glucose at the 14th hour of fermentation,and adding 2% glucose again at the 22nd hour of fermentation.[Conclusion] In the microbial fermentation process,the fed-batch fermentation could disarm the substrate inhibition and obtain the hyaluronic acid with the larger relative molecular mass and the higher yield.
基金Supported by Education and Research Projects for Yong and Middle-aged Teachers in Fujian Province(JB13188)Longyan Science and Technology Plan Project(2014LY63,2015LY32)Production-study-research Cooperation Project of Longyan University(LC2014010)~~
文摘The self-made mobile fermentation bag for spent white Hypsizygus marmoreus substrate was developed, and the relevant fermentation process was studied. The results showed that under the condition of single addition of Lactobacillus,nitrogen-free extract was degraded into lactic acid, leading to decreased pH value.On day 10, the fermentation effect reached the best with Lactobacillus abundance of 5.12×10~7/ml, lactic acid content of 0.48% and strong acid flavor. At this time, the fermentation material was moist without mildew and agglomeration, and was suitable for livestock and poultry. However, after 10 days, undesirable acids and mildew generated, a large amount of lactic acid bacteria died, and the fermentation material turned black and agglomerated, and became unsuitable for feeding livestock and poultry. Throughout the fermentation process, the pH value first decreased continuously until to 4.0, and then remained stable. During the fermentation of spent white H. marmoreus substrate, the nitrogen-free extract and crude fiber contents decreased, the crude protein content increased, while other indicators remained unchanged.
基金Supported by the Nafional Natural Science Foundation of China (51078008), the Natural Science Foundation of Guangdong Province (06022869, 07003251), and the National Key Scientific and Technological Project Water Pollution Control and Treatment (2008ZX07211-003, 2009ZX07314-009-003).
文摘To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-fl-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring AP/APHB and ANO2 -N/APHB is more necessary than monitoring AP/ACOD, ANO2 -N/ACOD, or AP / ANO2 -N.
文摘This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
基金the National Natural Science Fundation of China(Grant No.30470054)
文摘The objective of this work is to investigate the fermentation capacity and metabolic characteristics of a novel strain of bacteria B49 isolated from anaerobic activated sludge. The examination was conducted in batch culture at 35 ℃. The results showed that the carbon flow gave priority to the production of ethanol, and yield of ethanol is always greater than that of acetic acid. The hydrogen and ethanol occurred simultaneously. The exponential phase of the B49's cell growth was from 12 to 22 h. Evolution of hydrogen appeared to start after the exponential phase of cell growth and reach maximum production at the early stationary phase. The rate of hydrogen production reached a maximum of 16.8 mL/h, and the percentage of hydrogen gas in the headspace of serum bottle obtained a maximum of 41 % at 22 h. The B49 was able to grow using molasses as substrate for cell growth. When the molasses was used as substrate, maximum yield of hydrogen was obtained 2460 mL/L culture at 2 % (V/V) of molasses. The hydrogen yield was increased to 3060 mL/L culture after addition of 0.5 g/L of yeast extract in the molasses medium and the yield of hydrogen was increased by 24.4%.
基金Supported by the National Natural Science Foundation of China(60704036)
文摘An optimal control strategy is proposed to improve the fermentation titer,which combines the support vector machine(SVM)with real code genetic algorithm(RGA).A prediction model is established with SVM for penicillin fermentation processes,and it is used in RGA for fitting function.A control pattern is proposed to overcome the coupling problem of fermentation parameters,which describes the overall production condition.Experimental results show that the optimal control strategy improves the penicillin titer of the fermentation process by 22.88%,compared with the routine operation.
文摘Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
基金supported in part by grants from the National Institute of Health GM89630 and AI63080an endowed Research Scholar Chair by the Medical Research Institute Councilby an internal grant of the University of Maryland Medical Center(RYZ).
文摘Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast (Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15 (Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well- characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins, which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest. Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.
基金Supported by Statutory action of National Food and Nutrition Institute
文摘AIM:To examine if dietary and socio-economic factors contribute to Helicobacter pylori(H pylori)re-infection. METHODS:The population of patients consisted of subjects in whom H pylori infection had been successfully treated in the past.Patients were divided into two groups:Ⅰ-examined group(111 persons with H pylori re-infection)andⅡ-control group(175 persons who had not been re-infected).The respondents were interviewed retrospectively on their dietary habits and socio-economic factors. RESULTS:A statistically significant lower frequency of fermented dairy products(P<0.0001),vegetables (P=0.02),and fruit(P=0.008)consumption was noted among patients with H pylori re-infection as compared to those who had not been re-infected. CONCLUSION:High dietary intake of probiotic bacteria,mainly Lactobacillus,and antioxidants,mainly vitamin C(contained in fruit and vegetables),might decrease the risk of H pylori re-infection.
基金Supported by the National Natural Science Foundation of China(20476007 20676013)
文摘On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.