With the copper/iron cinder as the starting material,ferrous ions were obtained through maturing,acid leaching,reducing and purifying processes,and then iron nanoparticles were prepared by reacting with sodium borohyd...With the copper/iron cinder as the starting material,ferrous ions were obtained through maturing,acid leaching,reducing and purifying processes,and then iron nanoparticles were prepared by reacting with sodium borohydride in the system of ethanol-water.The nano Fe/SiO2 core-shell composite particles were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS).The products were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM) and reflectance absorption infrared spectroscopy (RA-IR).The particles were randomly dispersed in paraffin at a mass ratio of 5.5∶4.5 for microwave electromagnetic parameters detection in the frequency range of 2.0—18.0 GHz by vector network analyzer.The results showed that there were two characteristic absorption peaks of Si—O and Si—O—Fe bond appearing at 1389 cm-1 and 878 cm-1,which indicated that the nano iron was successfully coated by SiO2.Through measuring and calculation,the minimal reflection loss was-39.0 dB at 17.2 GHz when the sample thickness was 4.5 mm.So nano Fe/SiO2 core-shell composite particles can be prepared from copper/iron cider to be used as an effective microwave absorbing material.展开更多
Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating i...Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated. The process was studied taking into account such parameters as pH of water, precipitation time, xanthate dosage and storage time of BX. These products were found to be highly efficient in removing nickel. The residual con centration of nickel after treatment can be reduced to a value Of the ordor of 0. 01mg·1 ̄-1.展开更多
Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrat...Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.展开更多
文摘With the copper/iron cinder as the starting material,ferrous ions were obtained through maturing,acid leaching,reducing and purifying processes,and then iron nanoparticles were prepared by reacting with sodium borohydride in the system of ethanol-water.The nano Fe/SiO2 core-shell composite particles were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS).The products were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM) and reflectance absorption infrared spectroscopy (RA-IR).The particles were randomly dispersed in paraffin at a mass ratio of 5.5∶4.5 for microwave electromagnetic parameters detection in the frequency range of 2.0—18.0 GHz by vector network analyzer.The results showed that there were two characteristic absorption peaks of Si—O and Si—O—Fe bond appearing at 1389 cm-1 and 878 cm-1,which indicated that the nano iron was successfully coated by SiO2.Through measuring and calculation,the minimal reflection loss was-39.0 dB at 17.2 GHz when the sample thickness was 4.5 mm.So nano Fe/SiO2 core-shell composite particles can be prepared from copper/iron cider to be used as an effective microwave absorbing material.
文摘Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated. The process was studied taking into account such parameters as pH of water, precipitation time, xanthate dosage and storage time of BX. These products were found to be highly efficient in removing nickel. The residual con centration of nickel after treatment can be reduced to a value Of the ordor of 0. 01mg·1 ̄-1.
基金Project(21376273)supported by the National Natural Science Foundation of ChinaProject(2010FJ1011)supported by the Research Fund of Science and Technology of Hunan Province,China
文摘Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.