Bat SARS-Iike coronavirus (SL-CoV) has a genome organization almost identical to that of SARS-CoV, but the N-terminus of the Spike (S) proteins, which interacts with host receptor and is a major target of neutrali...Bat SARS-Iike coronavirus (SL-CoV) has a genome organization almost identical to that of SARS-CoV, but the N-terminus of the Spike (S) proteins, which interacts with host receptor and is a major target of neutralizing antibodies against CoVs, of the two viruses has only 63-64% sequence identity. Although there have been reports studying the overall immunogenicity of SsL, knowledge on the precise location of immunodominant determinants for SSL is still lacking. In this study, using a series of truncated expressed SsL fragments and SsL specific mouse sera, we identified two immunogenic determinants for SSL. Importantly, one of the two regions seems to be located in a region not shared by known immunogenic determinants of the SSARS. This finding will be of potential use in future monitoring of SL-CoV infection in bats and spillover animals and in development of more effective vaccine to cover broad protection against this new group of coronaviruses.展开更多
基金funded by the State Key Program for Basic Research Grant (2010CB530100,2011CB504700)special project for infectious diseases(2009ZX10004-109) from the Chinese Ministry of Science and Technology
文摘Bat SARS-Iike coronavirus (SL-CoV) has a genome organization almost identical to that of SARS-CoV, but the N-terminus of the Spike (S) proteins, which interacts with host receptor and is a major target of neutralizing antibodies against CoVs, of the two viruses has only 63-64% sequence identity. Although there have been reports studying the overall immunogenicity of SsL, knowledge on the precise location of immunodominant determinants for SSL is still lacking. In this study, using a series of truncated expressed SsL fragments and SsL specific mouse sera, we identified two immunogenic determinants for SSL. Importantly, one of the two regions seems to be located in a region not shared by known immunogenic determinants of the SSARS. This finding will be of potential use in future monitoring of SL-CoV infection in bats and spillover animals and in development of more effective vaccine to cover broad protection against this new group of coronaviruses.