A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary...A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary user to the primary user. The control center is aware of the information of the unused spectral resources in terms of the feedback of the sensing results from the secondary users. It allocates idle frequency bands among the secondary users. The primary user accesses the base station (BS) in orthogonal subchannels, and it cooperatively transmits packets with the secondary user and exploits the free band assigned by the control center to amplify-and-forward what it receives immediately. Under this scenario, the outage probability of the cooperative transmission pair of the primary and secondary transmitters is derived. The numerical simulation of the outage probabilities as a function of primary transmission probability ps, power allocation ratio ξ between the primary and secondary users, and the numbers of the primary and secondary users are given respectively. The results show that the optimal system performance is achieved under the conditions of ξ=0.5 and the numbers of the primary and the secondary users being equal.展开更多
A discussion is given on the convergence of the on-line gradient methods for two-layer feedforward neural networks in general cases. The theories are applied to some usual activation functions and energy functions.
基金The National Natural Science Foundation of China (No.60972026)the Natural Science Foundation of Jiangsu Province (No.BK2008289)Specialized Research Fund for the Doctoral Program ofHigher Education (No.20090092110009)
文摘A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary user to the primary user. The control center is aware of the information of the unused spectral resources in terms of the feedback of the sensing results from the secondary users. It allocates idle frequency bands among the secondary users. The primary user accesses the base station (BS) in orthogonal subchannels, and it cooperatively transmits packets with the secondary user and exploits the free band assigned by the control center to amplify-and-forward what it receives immediately. Under this scenario, the outage probability of the cooperative transmission pair of the primary and secondary transmitters is derived. The numerical simulation of the outage probabilities as a function of primary transmission probability ps, power allocation ratio ξ between the primary and secondary users, and the numbers of the primary and secondary users are given respectively. The results show that the optimal system performance is achieved under the conditions of ξ=0.5 and the numbers of the primary and the secondary users being equal.
基金Supported by the Natural Science Foundation of China
文摘A discussion is given on the convergence of the on-line gradient methods for two-layer feedforward neural networks in general cases. The theories are applied to some usual activation functions and energy functions.