Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,n...Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.展开更多
The thermal debinding behavior of stainless steel foam precursor in vacuum was studied and compared with that in hydrogen.The formation cause of pore channel was analyzed.The experiment results show that the binder re...The thermal debinding behavior of stainless steel foam precursor in vacuum was studied and compared with that in hydrogen.The formation cause of pore channel was analyzed.The experiment results show that the binder removal rate in vacuum is higher than that in hydrogen.In vacuum,the organic compounds can be removed effectively without change of pore size and the pore morphology for the sample.After pre-sintering,some sintering necks form and the sample has certain intensity.The initial surface pore forms with the temperature increasing at first,and then the internal melting binder is aspirated to form initial pore because of the capillary force and the metal powders re-arrange with the migration of binder at the same time.展开更多
Inspired by the gradient structure of the nature,two gradient lattice structures,i.e.,unidirectional gradient lattice(UGL)and bidirectional gradient lattice(BGL),are proposed based on the body-centered cubic(BCC)latti...Inspired by the gradient structure of the nature,two gradient lattice structures,i.e.,unidirectional gradient lattice(UGL)and bidirectional gradient lattice(BGL),are proposed based on the body-centered cubic(BCC)lattice to obtain specially designed mechanical behaviors,such as load-bearing and energy absorption capacities.First,a theoretical model is proposed to predict the initial stiffness of the gradient lattice structure under compressive loading,and validated against quasi-static compression tests and finite element models(FEMs).The deformation and failure mechanisms of the two structures are further studied based on experiments and simulations.The UGL structure exhibits a layer-by-layer failure mode,which avoids structure-wise shear failure in uniform structures.The BGL structure presents a symmetry deformation pattern,and the failure initiates at the weakest part.Finally,the energy absorption behaviors are also discussed.This study demonstrates the potential application of gradient lattice structures in load-transfer-path modification and energy absorption by topology design.展开更多
In this work, surface-mazelike Zn O, Cu, and Ni hierarchical structures were synthesized via a versatile ethylene glycol- mediated solvothermal method. The structure evolution of these materials bore striking similari...In this work, surface-mazelike Zn O, Cu, and Ni hierarchical structures were synthesized via a versatile ethylene glycol- mediated solvothermal method. The structure evolution of these materials bore striking similarities, including(1) initial formation of metal alkoxides precursors and(2) subsequent structural evolution of products from tiered plates to jigsaw puzzles; then to extrusion ridges, nests and spindles; and thereafter to final mazelike structures driven by persistent thermal decomposition of preformed precursors. Based on their unique surface morphologies in sinuous asymmetry, it is anticipated that such mazelike hierarchical structures may shed new light on the development of morphology-controlled adsorption and heterogeneous catalysts.展开更多
文摘Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.
基金Project(50974136)supported by the National Natural Science Foundation of ChinaProject(CX2009B037)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The thermal debinding behavior of stainless steel foam precursor in vacuum was studied and compared with that in hydrogen.The formation cause of pore channel was analyzed.The experiment results show that the binder removal rate in vacuum is higher than that in hydrogen.In vacuum,the organic compounds can be removed effectively without change of pore size and the pore morphology for the sample.After pre-sintering,some sintering necks form and the sample has certain intensity.The initial surface pore forms with the temperature increasing at first,and then the internal melting binder is aspirated to form initial pore because of the capillary force and the metal powders re-arrange with the migration of binder at the same time.
基金the National Natural Science Foundation of China(Grant Nos.11972049 and 12002050)National Key Laboratory Foundation of Science and Technology on Materials under Shock and Im-pact(Grant No.6142902200401)Opening Fund of State Key Laboratory of Nonlinear Mechanics.
文摘Inspired by the gradient structure of the nature,two gradient lattice structures,i.e.,unidirectional gradient lattice(UGL)and bidirectional gradient lattice(BGL),are proposed based on the body-centered cubic(BCC)lattice to obtain specially designed mechanical behaviors,such as load-bearing and energy absorption capacities.First,a theoretical model is proposed to predict the initial stiffness of the gradient lattice structure under compressive loading,and validated against quasi-static compression tests and finite element models(FEMs).The deformation and failure mechanisms of the two structures are further studied based on experiments and simulations.The UGL structure exhibits a layer-by-layer failure mode,which avoids structure-wise shear failure in uniform structures.The BGL structure presents a symmetry deformation pattern,and the failure initiates at the weakest part.Finally,the energy absorption behaviors are also discussed.This study demonstrates the potential application of gradient lattice structures in load-transfer-path modification and energy absorption by topology design.
基金supported by the National Natural Science Foundation of China(51072087)Specialized Research Fund for the Doctoral Program of Higher Education(20113719110001)
文摘In this work, surface-mazelike Zn O, Cu, and Ni hierarchical structures were synthesized via a versatile ethylene glycol- mediated solvothermal method. The structure evolution of these materials bore striking similarities, including(1) initial formation of metal alkoxides precursors and(2) subsequent structural evolution of products from tiered plates to jigsaw puzzles; then to extrusion ridges, nests and spindles; and thereafter to final mazelike structures driven by persistent thermal decomposition of preformed precursors. Based on their unique surface morphologies in sinuous asymmetry, it is anticipated that such mazelike hierarchical structures may shed new light on the development of morphology-controlled adsorption and heterogeneous catalysts.