In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepare...In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.展开更多
AIM:To investigate the role of bone marrow-derived endothelial progenitor cells(EPCs) in the angiogenesis of hepatocellular carcinoma(HCC).METHODS:The bone marrow of HCC mice was reconstructed by transplanting green f...AIM:To investigate the role of bone marrow-derived endothelial progenitor cells(EPCs) in the angiogenesis of hepatocellular carcinoma(HCC).METHODS:The bone marrow of HCC mice was reconstructed by transplanting green fluorescent protein(GFP) + bone marrow cells.The concentration of circulating EPCs was determined by colony-forming assays and fluorescence-activated cell sorting.Serum and tissue levels of vascular endothelial growth factor(VEGF) and colony-stimulating factor(CSF) were quantified by enzyme-linked immunosorbent assay.The distribution of EPCs in tumor and tumor-free tissues was detected by immunohistochemistry and real-time polymerase chain reaction.The incorporation of EPCs into hepatic vessels was examined by immunofluorescence and immunohistochemistry.The proportion of EPCs in vessels was then calculated.RESULTS:The HCC model was successful established.The flow cytometry analysis showed the mean percentage of CD133CD34 and CD133VEGFR2 double positive cells in HCC mice was 0.45% ± 0.16% and 0.20% ± 0.09% respectively.These values are much higher than in the sham-operation group(0.11% ± 0.13%,0.05% ± 0.11%,n = 9) at 14 d after modeling.At 21 d,the mean percentage of circulating CD133CD34 and CD133VEGFR2 cells is 0.23% ± 0.19%,0.25% ± 0.15% in HCC model vs 0.05% ± 0.04%,0.12% ± 0.11% in control.Compared to the transient increase observed in controls,the higher level of circulating EPCs were induced by HCC.In addition,the level of serum VEGF and CSF increased gradually in HCC,reaching its peak 14 d after modeling,then slowly decreased.Consecutive sections stained for the CD133 and CD34 antigens showed that the CD133+ and CD34+ VEGFR2 cells were mostly recruited to HCC tissue and concentrated in tumor microvessels.Under fluorescence microscopy,the bone-marrow(BM)-derived cells labeled with GFP were concentrated in the same area.The relative levels of CD133 and CD34 gene expression were elevated in tumors,around 5.0 and 3.8 times that of the tumor free area.In frozen liver sections from HCC mice,cells co-expressing CD133 and VEGFR2 were identified by immunohistochemical staining using anti-CD133 and VEGFR2 antibodies.In tumor tissue,the double-positive cells were incorporated into vessel walls.In immunofluorescent staining.These CD31 and GFP double positive cells are direct evidence that tumor vascular endothelial cells(VECs) come partly from BM-derived EPCs.The proportion of GFP CD31 double positive VECs(out of all VECs) on day 21 was around 35.3% ± 21.2%.This is much higher than the value recorded on day 7 group(17.1% ± 8.9%).The expression of intercellular adhesion molecule 1,vascular adhesion molecule 1,and VEGF was higher in tumor areas than in tumor-free tissues.CONCLUSION:Mobilized EPCs were found to participate in tumor vasculogenesis of HCC.Inhibiting EPC mobilization or recruitment to tumor tissue may be an efficient strategy for treating HCC.展开更多
Chirality-specific growth of single-walled carbon nanotubes(SWNTs) remains a challenge for their practical applications in electronics. Here, we explored the surface growth of SWNTs by utilizing the atomic-precise sil...Chirality-specific growth of single-walled carbon nanotubes(SWNTs) remains a challenge for their practical applications in electronics. Here, we explored the surface growth of SWNTs by utilizing the atomic-precise silver cluster complex [Ag_(15){1,3,5–(C:C)_3–C_6H_3}_2(Py[8])_3–(CF_3SO_3)_3](CF_3SO_3)_6(Py[8] is abbreviation for octamethylazacalix[8]pyridine) as a catalyst precursor. The diameters of most acquired SWNTs distributed in the range of 1.2–1.4 nm, which is suitable for making high performance field-effect transistors. The high quality of the obtained SWNTs was evidenced by Raman spectroscopy and electrical measurements. Successful growth of high quality SWNTs in this study foresees that rational design of metal-organic complexes as growth catalysts can open up a new avenue for the controllable synthesis of SWNTs.展开更多
Objective: To study the anatomical and biomechanical features of the interosseous membrane 0OM) of the cadaveric forearm. Methods: Ten radius-IOM-ulna structures were harvested from fresh-frozen cadavers to measur...Objective: To study the anatomical and biomechanical features of the interosseous membrane 0OM) of the cadaveric forearm. Methods: Ten radius-IOM-ulna structures were harvested from fresh-frozen cadavers to measure the length, width and thickness of the tendinous portion oflOM. Then, the tendinous portion was isolated along with the ulnar and radial ends to which the tendon attached after measurement. The proximal portion of the radius and the distal portion of the ulna were embedded and fixed in the dental base acrylic resin powder. The embedded specimen was clamped and fixed by the MTS 858 test machine using a 10 000 N load cell for the entire tensile test. IOM was stretched at a speed of 50 mm/min until it was ruptured. The load-displacement curve was depicted with a computer and the maximum load and stiffness were recorded at the same time. Results: The IOM of the forearm was composed of three portions: central tendinous tissue, membranous tis-sue and dorsal affiliated oblique cord. IOM was stretched at a neutral position, and flexed at pronation and supination positions. The tendinous portion of IOM was lacerated in 6 specimens when the point of the maximum load reached to 1 021.50 N± 250.13 N, the stiffness to 138.24 N/m±24.29 N/m, and the length of stretch to 9.77 mm±l.77 mm. Fracture occurred at the fixed end of the ulna before laceration of the tendinous portion in 4 specimens when the maximum load was 744.40 N±109.85 N, the stiffness was 151.17 N/m±30.68 N/m, and the length of the stretch was 6.51 mm±0.51 mm. Conclusions: The IOM of the forearm is a structure having ligamentous characteristics between the radius and the ulna. It is very important for maintenance of the longitudinal stability of the forearm. The anatomical and biomechanical data can be used as an objective criterion for evaluating the reconstructive method of IOM of the forearm.展开更多
The appropriate choice of chemical composition of a metallic precursor, which produces the basic structure units in the growth process of nanocrystals, is a high priority in the synthesis of metal--especially Au--nano...The appropriate choice of chemical composition of a metallic precursor, which produces the basic structure units in the growth process of nanocrystals, is a high priority in the synthesis of metal--especially Au--nanoparticles. In the present work, Au seeds (prepared by the reduction of Au3+ solution with NaBI~ in the presence of cetyltrimethylammonium bromide (CTAB)) have been used to initiate the growth of Au nanoparticles from two different Au precursors. When an aqueous Au+ solution prepared in the presence of CTAB micelles was treated with ascorbic acid in the presence of the gold seeds, a high yield (up to 92%) of gold nanoparticles was obtained. By varying the volume of the seed solution with a fixed amount of Au+, we can effectively control the morphological transformation of the resulting Au nanoparticles from cubes to octahedra. When an aqueous Au3+ solution was prepared in the presence of CTAB micelles and treated with ascorbic acid in the presence of the gold seeds, smaller yields of Au nanoparticles were obtained. A preliminary growth mechanism has been proposed based on the changes induced by varying the amount of ascorbic acid and the ratio of the concentration of Au* to the number of seeds.展开更多
基金Project(50604018)supported by the National Natural Science Foundation of China
文摘In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.
基金Supported by The National Natural Science Foundation of China,No. 30972904Jiangsu Provincial Key Medical Center for Hepatobiliary Disease,No. ZX200605
文摘AIM:To investigate the role of bone marrow-derived endothelial progenitor cells(EPCs) in the angiogenesis of hepatocellular carcinoma(HCC).METHODS:The bone marrow of HCC mice was reconstructed by transplanting green fluorescent protein(GFP) + bone marrow cells.The concentration of circulating EPCs was determined by colony-forming assays and fluorescence-activated cell sorting.Serum and tissue levels of vascular endothelial growth factor(VEGF) and colony-stimulating factor(CSF) were quantified by enzyme-linked immunosorbent assay.The distribution of EPCs in tumor and tumor-free tissues was detected by immunohistochemistry and real-time polymerase chain reaction.The incorporation of EPCs into hepatic vessels was examined by immunofluorescence and immunohistochemistry.The proportion of EPCs in vessels was then calculated.RESULTS:The HCC model was successful established.The flow cytometry analysis showed the mean percentage of CD133CD34 and CD133VEGFR2 double positive cells in HCC mice was 0.45% ± 0.16% and 0.20% ± 0.09% respectively.These values are much higher than in the sham-operation group(0.11% ± 0.13%,0.05% ± 0.11%,n = 9) at 14 d after modeling.At 21 d,the mean percentage of circulating CD133CD34 and CD133VEGFR2 cells is 0.23% ± 0.19%,0.25% ± 0.15% in HCC model vs 0.05% ± 0.04%,0.12% ± 0.11% in control.Compared to the transient increase observed in controls,the higher level of circulating EPCs were induced by HCC.In addition,the level of serum VEGF and CSF increased gradually in HCC,reaching its peak 14 d after modeling,then slowly decreased.Consecutive sections stained for the CD133 and CD34 antigens showed that the CD133+ and CD34+ VEGFR2 cells were mostly recruited to HCC tissue and concentrated in tumor microvessels.Under fluorescence microscopy,the bone-marrow(BM)-derived cells labeled with GFP were concentrated in the same area.The relative levels of CD133 and CD34 gene expression were elevated in tumors,around 5.0 and 3.8 times that of the tumor free area.In frozen liver sections from HCC mice,cells co-expressing CD133 and VEGFR2 were identified by immunohistochemical staining using anti-CD133 and VEGFR2 antibodies.In tumor tissue,the double-positive cells were incorporated into vessel walls.In immunofluorescent staining.These CD31 and GFP double positive cells are direct evidence that tumor vascular endothelial cells(VECs) come partly from BM-derived EPCs.The proportion of GFP CD31 double positive VECs(out of all VECs) on day 21 was around 35.3% ± 21.2%.This is much higher than the value recorded on day 7 group(17.1% ± 8.9%).The expression of intercellular adhesion molecule 1,vascular adhesion molecule 1,and VEGF was higher in tumor areas than in tumor-free tissues.CONCLUSION:Mobilized EPCs were found to participate in tumor vasculogenesis of HCC.Inhibiting EPC mobilization or recruitment to tumor tissue may be an efficient strategy for treating HCC.
基金the National Natural Science Foundation of China (21322303, 51372134 and 21573125)the financial support from the National Natural Science Foundation of China (21132005, 21421064 and 21522206)+1 种基金the National Program for Thousand Young Talents of Chinathe National Basic Research Program of China (2013CB834501)
文摘Chirality-specific growth of single-walled carbon nanotubes(SWNTs) remains a challenge for their practical applications in electronics. Here, we explored the surface growth of SWNTs by utilizing the atomic-precise silver cluster complex [Ag_(15){1,3,5–(C:C)_3–C_6H_3}_2(Py[8])_3–(CF_3SO_3)_3](CF_3SO_3)_6(Py[8] is abbreviation for octamethylazacalix[8]pyridine) as a catalyst precursor. The diameters of most acquired SWNTs distributed in the range of 1.2–1.4 nm, which is suitable for making high performance field-effect transistors. The high quality of the obtained SWNTs was evidenced by Raman spectroscopy and electrical measurements. Successful growth of high quality SWNTs in this study foresees that rational design of metal-organic complexes as growth catalysts can open up a new avenue for the controllable synthesis of SWNTs.
文摘Objective: To study the anatomical and biomechanical features of the interosseous membrane 0OM) of the cadaveric forearm. Methods: Ten radius-IOM-ulna structures were harvested from fresh-frozen cadavers to measure the length, width and thickness of the tendinous portion oflOM. Then, the tendinous portion was isolated along with the ulnar and radial ends to which the tendon attached after measurement. The proximal portion of the radius and the distal portion of the ulna were embedded and fixed in the dental base acrylic resin powder. The embedded specimen was clamped and fixed by the MTS 858 test machine using a 10 000 N load cell for the entire tensile test. IOM was stretched at a speed of 50 mm/min until it was ruptured. The load-displacement curve was depicted with a computer and the maximum load and stiffness were recorded at the same time. Results: The IOM of the forearm was composed of three portions: central tendinous tissue, membranous tis-sue and dorsal affiliated oblique cord. IOM was stretched at a neutral position, and flexed at pronation and supination positions. The tendinous portion of IOM was lacerated in 6 specimens when the point of the maximum load reached to 1 021.50 N± 250.13 N, the stiffness to 138.24 N/m±24.29 N/m, and the length of stretch to 9.77 mm±l.77 mm. Fracture occurred at the fixed end of the ulna before laceration of the tendinous portion in 4 specimens when the maximum load was 744.40 N±109.85 N, the stiffness was 151.17 N/m±30.68 N/m, and the length of the stretch was 6.51 mm±0.51 mm. Conclusions: The IOM of the forearm is a structure having ligamentous characteristics between the radius and the ulna. It is very important for maintenance of the longitudinal stability of the forearm. The anatomical and biomechanical data can be used as an objective criterion for evaluating the reconstructive method of IOM of the forearm.
基金Acknowledgements This work was supported by National Basic Research Program of China (973 Program No. 2009CB930703) and National Natural Science Foundation of China (No. 21033007). We thank Dr. Jiawei Yan, Yongli Zheng, and Haixin Lin for helpful discussion. We also thank Zhaobin Chen for ICP-AES measurements.
文摘The appropriate choice of chemical composition of a metallic precursor, which produces the basic structure units in the growth process of nanocrystals, is a high priority in the synthesis of metal--especially Au--nanoparticles. In the present work, Au seeds (prepared by the reduction of Au3+ solution with NaBI~ in the presence of cetyltrimethylammonium bromide (CTAB)) have been used to initiate the growth of Au nanoparticles from two different Au precursors. When an aqueous Au+ solution prepared in the presence of CTAB micelles was treated with ascorbic acid in the presence of the gold seeds, a high yield (up to 92%) of gold nanoparticles was obtained. By varying the volume of the seed solution with a fixed amount of Au+, we can effectively control the morphological transformation of the resulting Au nanoparticles from cubes to octahedra. When an aqueous Au3+ solution was prepared in the presence of CTAB micelles and treated with ascorbic acid in the presence of the gold seeds, smaller yields of Au nanoparticles were obtained. A preliminary growth mechanism has been proposed based on the changes induced by varying the amount of ascorbic acid and the ratio of the concentration of Au* to the number of seeds.