期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于混沌理论的煤与瓦斯突出前兆时序预测研究 被引量:14
1
作者 赵志刚 谭云亮 《岩土力学》 EI CAS CSCD 北大核心 2009年第7期2186-2190,共5页
煤与瓦斯突出的预测研究通常是通过监测对煤与瓦斯突出的启动比较敏感的指标来进行,指标监测数据的大小和变化规律是进行预测的基础。首先介绍了一步预测和多步预测的基本原理,然后对2组瓦斯浓度数据序列利用全域法、零阶局域法和一阶... 煤与瓦斯突出的预测研究通常是通过监测对煤与瓦斯突出的启动比较敏感的指标来进行,指标监测数据的大小和变化规律是进行预测的基础。首先介绍了一步预测和多步预测的基本原理,然后对2组瓦斯浓度数据序列利用全域法、零阶局域法和一阶局域法进行了对比计算;计算结果表明,加权一阶局域法的预测精度相对较高,该方法对混沌性强的数据序列的预测精度高于混沌性弱的数据序列的预测精度。 展开更多
关键词 混沌理论 煤与瓦斯突出 时序预测
下载PDF
1999年台湾集集地震余震区--嘉义地区地震的剪切波分裂参数随时间变化的研究 被引量:35
2
作者 郑秀芬 陈朝辉 张春贺 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2008年第1期149-157,共9页
本文利用台湾中央气象局布设的嘉义台CHY、民雄台CHN2和义竹台CHN8记录的地震波形资料,使用波形互相关的SAM分析方法(剪切波分裂系统分析方法),对发生在1999年9月20日台湾集集大地震(MW7.6)余震区的嘉义ML6.4和ML6.0级地震的震前序列,... 本文利用台湾中央气象局布设的嘉义台CHY、民雄台CHN2和义竹台CHN8记录的地震波形资料,使用波形互相关的SAM分析方法(剪切波分裂系统分析方法),对发生在1999年9月20日台湾集集大地震(MW7.6)余震区的嘉义ML6.4和ML6.0级地震的震前序列,开展了长达22个月的大震前近场源剪切波分裂参数随时间变化的应力预测研究.研究结果表明,在正常情况下,快剪切波的偏振方向大致近东西向,与嘉义地区最大主压应力场的方向一致,表明该区的各向异性受区域构造应力场控制;根据剪切波分裂参数——快剪切波偏振方向和慢剪切波时间延迟随时间的变化,我们认为,临震期慢剪切波时间延迟的快速下降和快剪切波偏振方向90°跳跃事件的频繁发生,可以作为临震期大震应力预测的前兆指标.近场源剪切波分裂参数随时间的变化在揭示震源区应力变化方面将发挥重大作用. 展开更多
关键词 台湾集集地震 余震区 嘉义地震 地震各向异性 剪切波分裂 应力预测 快剪切波偏振方向 慢剪切波时间延迟
下载PDF
岩石声发射特征参数研究现状与展望 被引量:2
3
作者 张钟毓 牛睿 +1 位作者 程广利 任禹鑫 《河南科技》 2021年第1期141-143,共3页
针对岩石声发射主要特征参数b值与分形维值D值,分析了声发射b值与D值的研究现状,并在此基础上,探讨了目前岩石声发射特征参数b值与D值研究中的不足之处,并对岩石声发射特征参数的研究进行展望。
关键词 声发射b值 分形维值D值 前兆预测
下载PDF
Anomaly detection of earthquake precursor data using long short-term memory networks 被引量:7
4
作者 Cai Yin Mei-Ling Shyu +2 位作者 Tu Yue-Xuan Teng Yun-Tian Hu Xing-Xing 《Applied Geophysics》 SCIE CSCD 2019年第3期257-266,394,共11页
Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predic... Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data. 展开更多
关键词 Earthquake precursor data deep learning LSTM-RNN prediction model anomaly detect io n
下载PDF
Short-term Earthquake Prediction in the Sichuan-Yunnan Region Using the Method of Modulated Earthquakes
5
作者 Wang Cuizhi Cao Jingquan Guo Hongli Zhang Lei Xue Na 《Earthquake Research in China》 2011年第1期101-110,共10页
By scanning modulated or un-modulated earthquakes spatio-temporally in the region of Sichuan-Yunnan,short-term non-stationary seismic precursory patterns were extracted with significant difference and the characterist... By scanning modulated or un-modulated earthquakes spatio-temporally in the region of Sichuan-Yunnan,short-term non-stationary seismic precursory patterns were extracted with significant difference and the characteristic of non-stationary short-term seismic anomalies were analyzed as well as prediction efficiency of modulated small earthquakes before a strong earthquake. Besides,small earthquake modulation ratios near the region of the epicenter were calculated and sorted by time. The results indicated that there were significant effects using the modulated earthquake method to predict earthquakes greater than MS6. 0 in a short time. Before the MS8. 0 Wenchuan earthquake,there were obvious short-term precursory seismicity gap patterns of modulated small earthquakes. 展开更多
关键词 Modulated earthquake Non-steady-state Modulation ratio Short-term earthquake prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部