针对湍流退化图像随机性的问题,提出了一种基于随机点扩散函数的多帧湍流退化图像自适应复原方法。首先介绍了随机点扩散函数的图像退化模型,并分析了点扩散函数随机性对图像复原造成的影响,建立了基于随机点扩散函数的多帧图像退化模...针对湍流退化图像随机性的问题,提出了一种基于随机点扩散函数的多帧湍流退化图像自适应复原方法。首先介绍了随机点扩散函数的图像退化模型,并分析了点扩散函数随机性对图像复原造成的影响,建立了基于随机点扩散函数的多帧图像退化模型。在此基础上,建立了基于多帧退化图像的全变分复原模型,利用前向后向算子分裂法对模型进行求解,提高了算法的运算效率。然后,提出了一种新的自适应正则化参数选取方法,该方法利用全变分复原模型的目标函数计算正则化参数,当正则化参数收敛时,复原图像的峰值信噪比达到最大值,因此利用目标函数的相对差值作为自适应算法迭代终止的条件,可以获得最佳复原效果。最后通过实验分析,算法中退化图像的帧数应不大于10帧。实验结果表明:当取10帧退化图像时,AFBS算法运算时间与单帧的FBS算法相当,信噪比增益为1.4 d B。本文算法对图像噪声有明显的抑制作用,对湍流退化图像可以获得较好的复原效果。展开更多
文摘针对湍流退化图像随机性的问题,提出了一种基于随机点扩散函数的多帧湍流退化图像自适应复原方法。首先介绍了随机点扩散函数的图像退化模型,并分析了点扩散函数随机性对图像复原造成的影响,建立了基于随机点扩散函数的多帧图像退化模型。在此基础上,建立了基于多帧退化图像的全变分复原模型,利用前向后向算子分裂法对模型进行求解,提高了算法的运算效率。然后,提出了一种新的自适应正则化参数选取方法,该方法利用全变分复原模型的目标函数计算正则化参数,当正则化参数收敛时,复原图像的峰值信噪比达到最大值,因此利用目标函数的相对差值作为自适应算法迭代终止的条件,可以获得最佳复原效果。最后通过实验分析,算法中退化图像的帧数应不大于10帧。实验结果表明:当取10帧退化图像时,AFBS算法运算时间与单帧的FBS算法相当,信噪比增益为1.4 d B。本文算法对图像噪声有明显的抑制作用,对湍流退化图像可以获得较好的复原效果。