In this study,we fabricated a NiOx film by electrodeposition of an ethanediamine nickel complex precursor(pH=11)on a fluorine‐doped tin oxide substrate.The resulting film is robust and exhibits high catalytic activit...In this study,we fabricated a NiOx film by electrodeposition of an ethanediamine nickel complex precursor(pH=11)on a fluorine‐doped tin oxide substrate.The resulting film is robust and exhibits high catalytic activity for electrochemical water oxidation.Water oxidation is initiated with an overpotential of375mV(1mA/cm2)and a steady current density of8.5mA/cm2is maintained for at least10h at1.3V versus the normal hydrogen electrode.Kinetic analysis reveals that there is a2e?/3H+pre‐equilibrium process before the chemical rate‐determining step.The low‐cost preparation,robustness,and longevity make this catalyst competitive for applications in solar energy conversion and storage.展开更多
基金supported by the National Basic Research Program of China(973 program,2014CB239402)the National Natural Science Foundation of China(21476043)the Swedish Energy Agency and K&A Wallenberg Foundation~~
文摘In this study,we fabricated a NiOx film by electrodeposition of an ethanediamine nickel complex precursor(pH=11)on a fluorine‐doped tin oxide substrate.The resulting film is robust and exhibits high catalytic activity for electrochemical water oxidation.Water oxidation is initiated with an overpotential of375mV(1mA/cm2)and a steady current density of8.5mA/cm2is maintained for at least10h at1.3V versus the normal hydrogen electrode.Kinetic analysis reveals that there is a2e?/3H+pre‐equilibrium process before the chemical rate‐determining step.The low‐cost preparation,robustness,and longevity make this catalyst competitive for applications in solar energy conversion and storage.