The precursor prepared by coordinated co-precipitation was direct reduced by hydrogen to ultra-fine fibrous Fe-Ni alloy powder. The effects of concentrations of reactants, pH value, reaction temperature and additive o...The precursor prepared by coordinated co-precipitation was direct reduced by hydrogen to ultra-fine fibrous Fe-Ni alloy powder. The effects of concentrations of reactants, pH value, reaction temperature and additive on the preparation of precursor were systematically investigated. The structures, thermal decomposition processes and morphologies of the precursors were characterized by X-ray diffraction (XRD), thermal gravity-differential thermal analysis (TG-DTA) and scanning electron microscoy (SEM). The results show that using 2% polyvinylpyrrolidone (PVP) (in mass fraction) as additive, a well-dispersed precursor with a uniform morphology can be obtained in a solution with Fe2+ and Ni2+ total concentration (1:1) of 0.8 mol/L, pH value of 6.2 at 60 °C, and a pure and well dispersed fibrous iron-nickel powder can be prepared by direct reduction of this precursor in a mixed atmosphere of nitrogen and hydrogen at the temperature of 420 °C.展开更多
Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterize...Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterized by XRD, SEM, IR and DTA/TGA analyses. The results show that the chemical composition and morphology of precursor precipitates at pH=8.4?8.8 are different from those of precursor precipitates at pH=6.0, and the mechanisms of the thermal decomposition of the precursors are different. The effects of various conditions in the process of thermal decomposition, including precursor morphology, atmosphere, temperature and time on the morphology and dispersion degree of obtained nickel powders were studied in detail. The final product inherits the morphology of precursor when the thermal decomposition is conducted under a weakly reducing atmosphere at temperature range of 400?440 °C for 30 min. Fibrous nickel powder can be produced with good dispersion, and its shape changes from smooth, straight and compact fiber into loose and curved fiber with rough surface.展开更多
A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ra...A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.展开更多
基金Shaanxi Province Key Research and Development Program(2018GY-121)National Key Project of Magneto Constrained Fusion Energy Development Program(2015GB115001)National Key Research and Development Program(2017YFB0902303)
基金Project (20090162120080) supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject (2010FJ3011)supported by the Program of Science and Technology of Hunan Province, ChinaProject supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, China
文摘The precursor prepared by coordinated co-precipitation was direct reduced by hydrogen to ultra-fine fibrous Fe-Ni alloy powder. The effects of concentrations of reactants, pH value, reaction temperature and additive on the preparation of precursor were systematically investigated. The structures, thermal decomposition processes and morphologies of the precursors were characterized by X-ray diffraction (XRD), thermal gravity-differential thermal analysis (TG-DTA) and scanning electron microscoy (SEM). The results show that using 2% polyvinylpyrrolidone (PVP) (in mass fraction) as additive, a well-dispersed precursor with a uniform morphology can be obtained in a solution with Fe2+ and Ni2+ total concentration (1:1) of 0.8 mol/L, pH value of 6.2 at 60 °C, and a pure and well dispersed fibrous iron-nickel powder can be prepared by direct reduction of this precursor in a mixed atmosphere of nitrogen and hydrogen at the temperature of 420 °C.
基金Project(2010FJ3012)supported by the Science and Technology Plan Foundation of Hunan Province,China
文摘Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterized by XRD, SEM, IR and DTA/TGA analyses. The results show that the chemical composition and morphology of precursor precipitates at pH=8.4?8.8 are different from those of precursor precipitates at pH=6.0, and the mechanisms of the thermal decomposition of the precursors are different. The effects of various conditions in the process of thermal decomposition, including precursor morphology, atmosphere, temperature and time on the morphology and dispersion degree of obtained nickel powders were studied in detail. The final product inherits the morphology of precursor when the thermal decomposition is conducted under a weakly reducing atmosphere at temperature range of 400?440 °C for 30 min. Fibrous nickel powder can be produced with good dispersion, and its shape changes from smooth, straight and compact fiber into loose and curved fiber with rough surface.
基金Project (20090162120080) supported by Doctoral Fund of Ministry of Education, ChinaProject (20070410989) supported by China Postdoctoral Science FoundationProject(748310000) supported by Central South University Science Foundation for Youths, China
文摘A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.