[Objective] To provide scientific basis for high phosphorus efficiency cultivation and regulation of rice. [Method] Changbai9 (CB9) and Jijing81 (JJ81) were used as experimental materials for pot experiment, and f...[Objective] To provide scientific basis for high phosphorus efficiency cultivation and regulation of rice. [Method] Changbai9 (CB9) and Jijing81 (JJ81) were used as experimental materials for pot experiment, and five levels of phosphorus nutrient ( Po - P4 ) were set for each variety, the net photosynthesis rate, Chlorophyll Meter Readings (SPAD Readings), stomatal conductance, transpiration rate, intercellular CO2 concentration, and stomatal limitation were observed and compared between five different phosphorus levels at filling stage. [ Result] The net photosynthesis rate of CB9 reached the highest at P3, and was significantly different from other treatments (P 〈0.05);the net photosynthesis rate of groups with phosphorus of J J81 were higher than that of the control group,and reached the highest at P,. The SPAD Readings of CB9 and JJ81 all achieved the highest at P3, and stomatal conductance and transpiration rate were all at first increased then decreased with the phosphor- us increased in CB9 and JJ81. With the phosphorus increased, intercellular CO2 concentration of CB9 decreased at first and then increased, while in JJ81 the trend was inversed,but the tendency of intercellular CO2 concentration were opposite to that of stomatal limitation in both culti- vars. [ Conclusion] Appropriate adding phosphorus could improve photosynthetic characteristic of rice flag-leaf,but displayed significant genotypic difference.展开更多
The changes in photochemical features of Photosystem Ⅱ (PS Ⅱ) and contents of Rubisco large subunit (RLS) and small subunit (RSS) in flag leaf from 75DAS to 113DAS (from filling to harvesting stages) were investigat...The changes in photochemical features of Photosystem Ⅱ (PS Ⅱ) and contents of Rubisco large subunit (RLS) and small subunit (RSS) in flag leaf from 75DAS to 113DAS (from filling to harvesting stages) were investigated in two hybrid rices (Oryza sativa L) cv. Liangyoupeijiu and cv. Shanyou 63 grown in the field. Liangyoupeijiu is a super high-yielding rice and Shanyou 63 has widely been planted in China in these years. The results indicate that soluble protein and chlorophyll in both cultivars degraded slowly at first and dramatically thereafter. The degradation speed of soluble protein in Shanyou 63 was faster than that in Liangyoupeijiu. Both Fv/Fm and qP decreased in parallel with leaf senescence, whereas qN fell at first and then rose. No significant change in excitation pressure (1-qP) was found before 89DAS but a sharply increase in both cultivars after it occurred. Excitation pressure rose more rapidly in Shanyou 63 than that in Liangyoupeijiu. The changes of RLS and RSS content exhibited the same trend as that of soluble protein content. A better linear correlation between RLS, RSS degradation and elevation of (1-qP) were shown in both cultivars. We suggest that the increase in PSⅡ excitation pressure possibly induced the quick senescence process in rice flag leaf. The high-yielding of Liangyoupeijiu may be due to its maintenance of stronger photosynthetic capacity, longer and more stable photosynthetic functional du-ration than that of Shanyou 63.展开更多
With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll ...With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.展开更多
Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a tra...Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.展开更多
An ecological project called fish biomanipulation, other than the conventional fishery culture technique, was put forward in this paper for the excess propagation control of Cyclops. The control effects on Cyclops of ...An ecological project called fish biomanipulation, other than the conventional fishery culture technique, was put forward in this paper for the excess propagation control of Cyclops. The control effects on Cyclops of four species of fish were investigated experimentally at stocking density of 30 g per cubic meter of water. The experimental results showed that the food habit of the fish had significant influence on the biological control of Cyclops. The propagation of Cyclops could be controlled effectively and also the water quality was improved simultaneously by stocking the filter-feeding fishes, such as silver carp and bighead carp. Whereas, herbivorous Ctenopharyugodon idellus and omnivorous Cyprinus carpio had no obvious biological effects on controlling the growth of Cyclops and restoring water quality. The results further proved that under condition of proper poly-culture density of silver carp and bighead carp, the number of Cyclops might be controlled at very low level and the eutrophication might be abated by removing the nutrients from water body.展开更多
The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermosensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37℃ during 8:00...The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermosensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37℃ during 8:00-17:00 and 30℃ during 17:00-8:00) were investigated using an optical and a transmission electron microscopy. The membrane permeability and malondialdehyde content increased under the high temperature stress, and the increase of both variables was greater in the line 4628 than in the line 996. Under the high temperature stress, the line 996 showed tightly arranged mesophyll cells in flag leaves, fully developed vascular bundles and some closed stomata, whereas the line 4628 suffered from injury because of undeveloped vascular bundles, loosely arranged mesophyll cells and opened stomata. The mesophyll cells in flag leaves of the line 4628 were severely damaged under the high temperature stress, i.e. the chloroplast envelope became blurred, the grana thylakoid layer was arranged loosely and irregularly, the stroma layer disappeared, many osmiophilic granules appeared within the chloroplast, the outer membrane of mitochondria and the nucleus disintegrated and became blurred, the nucleolus disappeared, and much fibrillar-granular materials appeared within the nucleus. In contrast, the mesophyll cells in flag leaves of the line 996 maintained an intact ultrastructure under the high temperature stress. From these results, it is suggested that the ultrastructural modification of the cell membrane system is the primary plant response to high temperature stress and can be used as an index to evaluate the crop heat tolerance.展开更多
The degradation behaviors(mass loss,tensile strength,crystallinity index,and microstructure)of sisal fibers immersed in sodium hydroxide solution with pH of 13.6,12.9,and 11.9 were investigated via X-ray diffraction a...The degradation behaviors(mass loss,tensile strength,crystallinity index,and microstructure)of sisal fibers immersed in sodium hydroxide solution with pH of 13.6,12.9,and 11.9 were investigated via X-ray diffraction and scanning electron microscopy.A three-stage degradation process of natural fibers in an alkaline environment was proposed.The results showed that the sisal fibers exhibited a sharp mass loss over the first 7 d of degradation under all pH conditions,attributable to the rapid hydrolysis of lignin and hemicellulose at the fiber surface.The sisal fibers degraded at pH 12.9 and 13.6 over 1 month exhibited significantly lower tensile strengths(181 and 195 MPa,respectively)than the original fibers(234 MPa)because of the loosely bound structure of the component microfibrils caused by the hydrolysis of the linking lignin and hemicellulose.After 6-month degradation,stripped microfibrils occurred in the fibers,resulting in substantial degradation in tensile strength.The sisal fibers degraded at pH 11.9 largely maintained their integrity and tensile strength,even after 6 months,indicating that reducing the environment pH can effectively mitigate the degradation.展开更多
The sensitivity of freshwater invertebrates to agricultural pollutants is supposed to increase with rising temperature due to global warming. The aim of this study was to measure the effect of temperature on the letha...The sensitivity of freshwater invertebrates to agricultural pollutants is supposed to increase with rising temperature due to global warming. The aim of this study was to measure the effect of temperature on the lethal toxicity of ammonia-N, the herbicide Imazamox and the mixture of the two chemicals, in the adults and the juveniles of a population of the copepod Eucyc- lops serrulatus. This is a widely distributed species found in surface waters, in transitional habitats between surface water and groundwater, and in genuine groundwater environments. We tested the sensitivity by short-term bioassays (96 h) at 15℃ and 18℃, respectively. Our results highlighted the following: (1) increasing temperature affected the sensitivity of the adults to am- monia-N and of the juveniles to the mixture, all of which were more sensitive to its detrimental effects at 18~C; (2) the juvenile stages were more sensitive than the adults to all toxicants, and (3) for all combinations of chemicals and temperatures, the effects were synergistic and approximately one order of magnitude greater than those expected according to a concentration addition model when comparing the LC50 for each chemical in the mixture with the LC50s of chemicals individually assayed. Overall, in a context of global change, ammonia-N and mixtures of agricultural pollutants may affect the survival rate of species that spend a part or the whole life-cycle in the hyporheic habitat, with detrimental effects to biodiversity and ecosystem services provided by the hyporheic biota [Current Zoology 61 (4): 629~540, 2015].展开更多
基金Supported by Key Technique Research on Middle and Low Yield Paddy Field Improvement in Jilin Middle Part(20096026)~~
文摘[Objective] To provide scientific basis for high phosphorus efficiency cultivation and regulation of rice. [Method] Changbai9 (CB9) and Jijing81 (JJ81) were used as experimental materials for pot experiment, and five levels of phosphorus nutrient ( Po - P4 ) were set for each variety, the net photosynthesis rate, Chlorophyll Meter Readings (SPAD Readings), stomatal conductance, transpiration rate, intercellular CO2 concentration, and stomatal limitation were observed and compared between five different phosphorus levels at filling stage. [ Result] The net photosynthesis rate of CB9 reached the highest at P3, and was significantly different from other treatments (P 〈0.05);the net photosynthesis rate of groups with phosphorus of J J81 were higher than that of the control group,and reached the highest at P,. The SPAD Readings of CB9 and JJ81 all achieved the highest at P3, and stomatal conductance and transpiration rate were all at first increased then decreased with the phosphor- us increased in CB9 and JJ81. With the phosphorus increased, intercellular CO2 concentration of CB9 decreased at first and then increased, while in JJ81 the trend was inversed,but the tendency of intercellular CO2 concentration were opposite to that of stomatal limitation in both culti- vars. [ Conclusion] Appropriate adding phosphorus could improve photosynthetic characteristic of rice flag-leaf,but displayed significant genotypic difference.
文摘The changes in photochemical features of Photosystem Ⅱ (PS Ⅱ) and contents of Rubisco large subunit (RLS) and small subunit (RSS) in flag leaf from 75DAS to 113DAS (from filling to harvesting stages) were investigated in two hybrid rices (Oryza sativa L) cv. Liangyoupeijiu and cv. Shanyou 63 grown in the field. Liangyoupeijiu is a super high-yielding rice and Shanyou 63 has widely been planted in China in these years. The results indicate that soluble protein and chlorophyll in both cultivars degraded slowly at first and dramatically thereafter. The degradation speed of soluble protein in Shanyou 63 was faster than that in Liangyoupeijiu. Both Fv/Fm and qP decreased in parallel with leaf senescence, whereas qN fell at first and then rose. No significant change in excitation pressure (1-qP) was found before 89DAS but a sharply increase in both cultivars after it occurred. Excitation pressure rose more rapidly in Shanyou 63 than that in Liangyoupeijiu. The changes of RLS and RSS content exhibited the same trend as that of soluble protein content. A better linear correlation between RLS, RSS degradation and elevation of (1-qP) were shown in both cultivars. We suggest that the increase in PSⅡ excitation pressure possibly induced the quick senescence process in rice flag leaf. The high-yielding of Liangyoupeijiu may be due to its maintenance of stronger photosynthetic capacity, longer and more stable photosynthetic functional du-ration than that of Shanyou 63.
文摘With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.
文摘Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.
基金Sponsored by the Hi-Tech Research and Development Program of China (Grant No. 2002AA601140 )the National Science Foundation of Heilongjiang Province (Grant No. QC03C17)the Focal Laboratory Opening Research Program of Beijing and the Scientific Resear
文摘An ecological project called fish biomanipulation, other than the conventional fishery culture technique, was put forward in this paper for the excess propagation control of Cyclops. The control effects on Cyclops of four species of fish were investigated experimentally at stocking density of 30 g per cubic meter of water. The experimental results showed that the food habit of the fish had significant influence on the biological control of Cyclops. The propagation of Cyclops could be controlled effectively and also the water quality was improved simultaneously by stocking the filter-feeding fishes, such as silver carp and bighead carp. Whereas, herbivorous Ctenopharyugodon idellus and omnivorous Cyprinus carpio had no obvious biological effects on controlling the growth of Cyclops and restoring water quality. The results further proved that under condition of proper poly-culture density of silver carp and bighead carp, the number of Cyclops might be controlled at very low level and the eutrophication might be abated by removing the nutrients from water body.
基金supported by the National Natural Science Foundation of China (Grant No. 30500315)the Agricultural Technological Results Transformation Item of Ministry of Agriculture, China (Grant No. 05EFN214300193)the Educational Foundation of Hunan Province, China (Grant No. 07C360)
文摘The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermosensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37℃ during 8:00-17:00 and 30℃ during 17:00-8:00) were investigated using an optical and a transmission electron microscopy. The membrane permeability and malondialdehyde content increased under the high temperature stress, and the increase of both variables was greater in the line 4628 than in the line 996. Under the high temperature stress, the line 996 showed tightly arranged mesophyll cells in flag leaves, fully developed vascular bundles and some closed stomata, whereas the line 4628 suffered from injury because of undeveloped vascular bundles, loosely arranged mesophyll cells and opened stomata. The mesophyll cells in flag leaves of the line 4628 were severely damaged under the high temperature stress, i.e. the chloroplast envelope became blurred, the grana thylakoid layer was arranged loosely and irregularly, the stroma layer disappeared, many osmiophilic granules appeared within the chloroplast, the outer membrane of mitochondria and the nucleus disintegrated and became blurred, the nucleolus disappeared, and much fibrillar-granular materials appeared within the nucleus. In contrast, the mesophyll cells in flag leaves of the line 996 maintained an intact ultrastructure under the high temperature stress. From these results, it is suggested that the ultrastructural modification of the cell membrane system is the primary plant response to high temperature stress and can be used as an index to evaluate the crop heat tolerance.
基金The Natural Science Foundation of China(No.52108191)the China Postdoctoral Science Foundation(No.2021M690622)+2 种基金the Changzhou Sci&Tech Program(No.CJ20210153,CE20205050)the Qing Lan Project of Jiangsuthe Young Sci-tech Talents Promoting Project of Changzhou。
文摘The degradation behaviors(mass loss,tensile strength,crystallinity index,and microstructure)of sisal fibers immersed in sodium hydroxide solution with pH of 13.6,12.9,and 11.9 were investigated via X-ray diffraction and scanning electron microscopy.A three-stage degradation process of natural fibers in an alkaline environment was proposed.The results showed that the sisal fibers exhibited a sharp mass loss over the first 7 d of degradation under all pH conditions,attributable to the rapid hydrolysis of lignin and hemicellulose at the fiber surface.The sisal fibers degraded at pH 12.9 and 13.6 over 1 month exhibited significantly lower tensile strengths(181 and 195 MPa,respectively)than the original fibers(234 MPa)because of the loosely bound structure of the component microfibrils caused by the hydrolysis of the linking lignin and hemicellulose.After 6-month degradation,stripped microfibrils occurred in the fibers,resulting in substantial degradation in tensile strength.The sisal fibers degraded at pH 11.9 largely maintained their integrity and tensile strength,even after 6 months,indicating that reducing the environment pH can effectively mitigate the degradation.
文摘The sensitivity of freshwater invertebrates to agricultural pollutants is supposed to increase with rising temperature due to global warming. The aim of this study was to measure the effect of temperature on the lethal toxicity of ammonia-N, the herbicide Imazamox and the mixture of the two chemicals, in the adults and the juveniles of a population of the copepod Eucyc- lops serrulatus. This is a widely distributed species found in surface waters, in transitional habitats between surface water and groundwater, and in genuine groundwater environments. We tested the sensitivity by short-term bioassays (96 h) at 15℃ and 18℃, respectively. Our results highlighted the following: (1) increasing temperature affected the sensitivity of the adults to am- monia-N and of the juveniles to the mixture, all of which were more sensitive to its detrimental effects at 18~C; (2) the juvenile stages were more sensitive than the adults to all toxicants, and (3) for all combinations of chemicals and temperatures, the effects were synergistic and approximately one order of magnitude greater than those expected according to a concentration addition model when comparing the LC50 for each chemical in the mixture with the LC50s of chemicals individually assayed. Overall, in a context of global change, ammonia-N and mixtures of agricultural pollutants may affect the survival rate of species that spend a part or the whole life-cycle in the hyporheic habitat, with detrimental effects to biodiversity and ecosystem services provided by the hyporheic biota [Current Zoology 61 (4): 629~540, 2015].