Photodeachment of H^-near a reflective spherical surface was studied by Haneef et al.[J.Phys.B:At.Mol.Opt.Phys.44(2011)195004]using a theoretical imaging method.The total cross section displays interesting oscillation...Photodeachment of H^-near a reflective spherical surface was studied by Haneef et al.[J.Phys.B:At.Mol.Opt.Phys.44(2011)195004]using a theoretical imaging method.The total cross section displays interesting oscillations.Here we re-examine the total photodetachment cross section of this system by directly applying the standard closed-orbit theory.Our result for the total cross section differs from the result obtained by Haneef et al.The difference between the two results vanishes in the limit of large radius of the reflective sphere.We argue that the theoretical imaging method developed originally for photodetachment near a Hat surface can not be directly applied to the present system.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.11474079 and 11421063
文摘Photodeachment of H^-near a reflective spherical surface was studied by Haneef et al.[J.Phys.B:At.Mol.Opt.Phys.44(2011)195004]using a theoretical imaging method.The total cross section displays interesting oscillations.Here we re-examine the total photodetachment cross section of this system by directly applying the standard closed-orbit theory.Our result for the total cross section differs from the result obtained by Haneef et al.The difference between the two results vanishes in the limit of large radius of the reflective sphere.We argue that the theoretical imaging method developed originally for photodetachment near a Hat surface can not be directly applied to the present system.