This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various...This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.展开更多
Using the closed orbit theory, the photodetachment cross section of H- near a dielectric surface has been derived and calculated. The results show that the dielectric surface has great influence on the photodetachment...Using the closed orbit theory, the photodetachment cross section of H- near a dielectric surface has been derived and calculated. The results show that the dielectric surface has great influence on the photodetachment process of negative ion near the ionization threshold. Above the ionization threshold, the photodetachment cross section starts to oscillate. With the increase of the energy, the oscillating amplitude decreases and the oscillating frequency increases. The oscillation in the photodetachment cross section of H- in the presence of a dielectric surface is either larger or smaller than the photodetachment of H- without the surface. As the photon energy is larger than the critical value Epc, the oscillatory structure disappeared and the cross section approaches to the case of the photodetachment of H- without any external fields. For a given detached-electron energy, the photodetachment cross section becomes decreased with the increase of the ion-surface distance. Besides, the dielectric constant has great influence on the photodetachment of H-. With the increase of the dielectric constant, the oscillation in the cross section becomes increased. As the dielectric constant increases to infinity, the cross section is the same as the photodetachment of H- near a metal surface. This study provides a new understanding on the photodetachment process of H- in the presence of a dielectric surface.展开更多
Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,an...Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,and their micro-morphology evolution in the SLCRB process are investigated with scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD).In the casting pool,initial aluminized coating is first generated on the copper strip surface,with the diffusion layer mainly consisting ofα(Al)+CuAl2and growing at high temperatures,with the maximum thickness of10μm.After sequent rolling below the kiss point,the diffusion layer is broken by severe elongation,which leads to an additional crack bond process with a fresh interface of virgin base metal.The average thickness is reduced from10to5μm.The reaction products,CuAl2,CuAl,and Cu9Al4,are dispersed along the rolling direction.Peeling and bending test results indicate that the fracture occurs in the aluminum substrate,and the morphology is a dimple pattern.No crack or separation is found at the bonding interface after90°-180°bending.The presented method provides an economical way to fabricate Cu/Al clad strip directly.展开更多
The total photodetachment cross section of a linear triatomic anion is derived for arbitrary laser polarization direction. The cross section is ,shown to be strongly oscillatory when the laser polarization direction i...The total photodetachment cross section of a linear triatomic anion is derived for arbitrary laser polarization direction. The cross section is ,shown to be strongly oscillatory when the laser polarization direction is parallel to the axis of the system; the oscillation amplitude decreases and vanishes as the angle between the laser polarization and the anion axis increases and becomes perpendicular to the axis. The average cross section over the orientations of the triatomie system is also obtained. The cross section of the triatomic anion is compared with the cross section of a two-center system. We find there are two oscillation frequencies in the triatomie anion in contrast to only one oscillation frequency in the two-center case. Closed-orbit theory is used to explain the oscillations.展开更多
文摘This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.
基金Supported by National Natural Science Foundation of China under Grant No. 10604045the University Science & Technology Planning Program of Shandong Province under Grant No. J09LA02+1 种基金the Education Department Foundation of Shandong Province under Grant No. J08LI03 the Discipline Construction Fund of Ludong University
文摘Using the closed orbit theory, the photodetachment cross section of H- near a dielectric surface has been derived and calculated. The results show that the dielectric surface has great influence on the photodetachment process of negative ion near the ionization threshold. Above the ionization threshold, the photodetachment cross section starts to oscillate. With the increase of the energy, the oscillating amplitude decreases and the oscillating frequency increases. The oscillation in the photodetachment cross section of H- in the presence of a dielectric surface is either larger or smaller than the photodetachment of H- without the surface. As the photon energy is larger than the critical value Epc, the oscillatory structure disappeared and the cross section approaches to the case of the photodetachment of H- without any external fields. For a given detached-electron energy, the photodetachment cross section becomes decreased with the increase of the ion-surface distance. Besides, the dielectric constant has great influence on the photodetachment of H-. With the increase of the dielectric constant, the oscillation in the cross section becomes increased. As the dielectric constant increases to infinity, the cross section is the same as the photodetachment of H- near a metal surface. This study provides a new understanding on the photodetachment process of H- in the presence of a dielectric surface.
基金Project(51474189)supported by the National Natural Science Foundation of ChinaProject(QN2015214)supported by the Educational Commission of Hebei Province,China
文摘Cu/Al clad strips are prepared using solid?liquid cast-rolling bonding(SLCRB)technique with a d160mm×150mm twin-roll experimental caster.The extent of interfacial reactions,composition of the reaction products,and their micro-morphology evolution in the SLCRB process are investigated with scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD).In the casting pool,initial aluminized coating is first generated on the copper strip surface,with the diffusion layer mainly consisting ofα(Al)+CuAl2and growing at high temperatures,with the maximum thickness of10μm.After sequent rolling below the kiss point,the diffusion layer is broken by severe elongation,which leads to an additional crack bond process with a fresh interface of virgin base metal.The average thickness is reduced from10to5μm.The reaction products,CuAl2,CuAl,and Cu9Al4,are dispersed along the rolling direction.Peeling and bending test results indicate that the fracture occurs in the aluminum substrate,and the morphology is a dimple pattern.No crack or separation is found at the bonding interface after90°-180°bending.The presented method provides an economical way to fabricate Cu/Al clad strip directly.
文摘The total photodetachment cross section of a linear triatomic anion is derived for arbitrary laser polarization direction. The cross section is ,shown to be strongly oscillatory when the laser polarization direction is parallel to the axis of the system; the oscillation amplitude decreases and vanishes as the angle between the laser polarization and the anion axis increases and becomes perpendicular to the axis. The average cross section over the orientations of the triatomie system is also obtained. The cross section of the triatomic anion is compared with the cross section of a two-center system. We find there are two oscillation frequencies in the triatomie anion in contrast to only one oscillation frequency in the two-center case. Closed-orbit theory is used to explain the oscillations.