Based on the data from typical sites in the Jianghuai region,many kinds of soil layer seismic response are modeled by increasing and decreasing the measured values of shear velocity to a certain scale. The seismic res...Based on the data from typical sites in the Jianghuai region,many kinds of soil layer seismic response are modeled by increasing and decreasing the measured values of shear velocity to a certain scale. The seismic response of soil layer sites are calculated using the one-dimensional equivalent linear method in the frequency domain by choosing the Taft,Kobe and El-centro records as the ground motion input. The results show that the impact of shear velocity variability on the surface ground motion is in relation to the soil layer structure and ground motion input parameters such as amplitude and spectral characteristic. With the increase of shear velocity,the PGA( peak ground acceleration)on the surface of site will increase,however,the characteristic period of the acceleration response spectra is decreasing.展开更多
A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condi...A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of nonstop machine. It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method, and experi ments are extensively carried out with a laboratory test rig. Both the simulation and experimental re suits basically agree well in that, the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the plitude of one time running speed component bration has been basically eliminated. entire rotor system. Experimental results show the am decreases by 30% , and the two time running speed vibration has been basically eliminated.展开更多
The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis ...The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis is performed by considering the soil-structure interaction effects and based on the model of the reactor building in a typical pressurized water reactor nuclear power plant (NPP). The numerical results show that for the typical floor selected, while the relative increment ratio of the dynamic shear wave velocity varies from -30% to 30% compared to the basis of 1 930 m/s, the relative variation of the horizontal response spectra peak value lies in the scope of ±10% for the internal structure, and the relative variation of the frequency corresponding to the spectra peak is 0.0% in most cases. The relative variation of the vertical response spectra peak value lies in the scope of - 10% to 22%, and the relative variation of the frequency corresponding to the Spectra peak lies in the scope of - 22% to 4%. The analysis indicates that the dynamic shear wave velocity and the Poisson's ratio of the rock would affect the seismic response of structure and the soil-structure interaction effects should be considered in seismic analysis and design of NPP even for a hard rock site.展开更多
基金sponsored by the Anhui Natural Science Foundation Project(10040606Q24)the Youth Seismic Research Program of Anhui Province,China(20120707)and(20140301)
文摘Based on the data from typical sites in the Jianghuai region,many kinds of soil layer seismic response are modeled by increasing and decreasing the measured values of shear velocity to a certain scale. The seismic response of soil layer sites are calculated using the one-dimensional equivalent linear method in the frequency domain by choosing the Taft,Kobe and El-centro records as the ground motion input. The results show that the impact of shear velocity variability on the surface ground motion is in relation to the soil layer structure and ground motion input parameters such as amplitude and spectral characteristic. With the increase of shear velocity,the PGA( peak ground acceleration)on the surface of site will increase,however,the characteristic period of the acceleration response spectra is decreasing.
基金Supported by the National Basic Research Program of China(No.2012CB026000)the Joint Project Special Fund of Education Committee of Beijingthe Ph.D.Programs Foundation of Ministry of Education of China(No.20110010110009)
文摘A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of nonstop machine. It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method, and experi ments are extensively carried out with a laboratory test rig. Both the simulation and experimental re suits basically agree well in that, the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the plitude of one time running speed component bration has been basically eliminated. entire rotor system. Experimental results show the am decreases by 30% , and the two time running speed vibration has been basically eliminated.
基金SUPPORTED BY NATIONAL NATURAL SCIENCE FOUNDATION FOR DISTINGUISHED YOUNG SCHOLARS OF CHINA (NO. 50425824).
文摘The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis is performed by considering the soil-structure interaction effects and based on the model of the reactor building in a typical pressurized water reactor nuclear power plant (NPP). The numerical results show that for the typical floor selected, while the relative increment ratio of the dynamic shear wave velocity varies from -30% to 30% compared to the basis of 1 930 m/s, the relative variation of the horizontal response spectra peak value lies in the scope of ±10% for the internal structure, and the relative variation of the frequency corresponding to the spectra peak is 0.0% in most cases. The relative variation of the vertical response spectra peak value lies in the scope of - 10% to 22%, and the relative variation of the frequency corresponding to the Spectra peak lies in the scope of - 22% to 4%. The analysis indicates that the dynamic shear wave velocity and the Poisson's ratio of the rock would affect the seismic response of structure and the soil-structure interaction effects should be considered in seismic analysis and design of NPP even for a hard rock site.