野外考察和室内综合分析表明,日本中央构造线的右旋位错自上新世以来一直延续至今.资料表明,晚更新世以来的平均位错速率达6 .1 m m/a .高滑动速率而近1 ka 来无强破坏性地震发生的事实意味着该断裂现今可能处在蠕滑运动为主的相对稳滑...野外考察和室内综合分析表明,日本中央构造线的右旋位错自上新世以来一直延续至今.资料表明,晚更新世以来的平均位错速率达6 .1 m m/a .高滑动速率而近1 ka 来无强破坏性地震发生的事实意味着该断裂现今可能处在蠕滑运动为主的相对稳滑状态.断裂带结构简单、走向稳定、高角度而无横向断裂切割等特点有利于断裂的蠕滑运动.展开更多
The Ordos block is a stable tectonic unit since the Cenozoic. Whether low-resistivity layers exist in the middle and lower crust of this kind block is an open question. This work attempts to reveal the entire crustal ...The Ordos block is a stable tectonic unit since the Cenozoic. Whether low-resistivity layers exist in the middle and lower crust of this kind block is an open question. This work attempts to reveal the entire crustal structure of the block based on interpretation of magnetotelluric data collected along the profile across this region. The result shows that a layered structure characterizes the crust of the Ordos block, with a low-resistivity layer at depth of about 20km, presumably associated with fluids there. In contrast, in the areas of active tectonics on the east and west of the block, there are no such layered electric structures in the crust, and the low-resistivity zones may be related to the decollement zones (or ductile shear zones) in the crust. The difference in electric structure of crust between the Ordos Block and neighboring areas is of significance to analyze the movement and deformation of varied blocks in the continent.展开更多
Here we describe ductile, ductile-brittle and brittle deformation styles in the northern segment of the Tertiary Biluoxue- shan-Chongshan shear zone lying to the east of the Eastern Himalayan Syntaxis. In the northern...Here we describe ductile, ductile-brittle and brittle deformation styles in the northern segment of the Tertiary Biluoxue- shan-Chongshan shear zone lying to the east of the Eastern Himalayan Syntaxis. In the northernmost part of the zone in the vi- cinity of the Eastern Himalayan Syntaxis, it consists of mylonitic gneiss, granite, and schist. Based on field relations and min- eral assemblages, the rocks are classified into gneiss belt in the west limb, including banded gneiss, augen mylonite and mig- matite gneiss, and schist belt in the east limb. Except for the massive granite pluton, the other three tectonites are affected by polystage deformation (D1-D4). Fold deformation of the first stage D1 is isoclinal to tight pattern with nearly N-S fold axes and steeply axial planar cleavage S 1, which resulted in the local crustal thickening under a contractive setting. D2 overprinted D1 and is characterized by tight folds with steep axes and N-S fold axial planar, which are also characterized by large-scale ductile strike-slip shear foliation $2, parallel to the nearly N-S trending axial planes of D1 and D2. The structural pattern of D2 represents a transpression along the zone. D3 occurred during the late stage of the transpression or post-transpression, produc- ing the NW-SE and NE-SW trending strike-slip faults of the third stage D3. Following the D3 deformation, the zone was ex- humed to shallow crustal level where the various tectonites underwent a brittle transtensional deformation D4, combined with one N-S trending strike-slip component and one normal faulting component. Structures and previous geochronologies pre- sented in the paper suggest that the study area is correlated with those in the adjacent tectonic zones, Ailaoshan-Red River shear zone and Gaoligong shear zone in the western Yunnan. It underwent intensive polyphase deformation, namely, crustal thickening, transpression, and transtension, responding to syn-collision and post-collision of India-Eurasia from 65 Ma to cur- rent period east of the Eastern Himalayan Syntaxis.展开更多
文摘野外考察和室内综合分析表明,日本中央构造线的右旋位错自上新世以来一直延续至今.资料表明,晚更新世以来的平均位错速率达6 .1 m m/a .高滑动速率而近1 ka 来无强破坏性地震发生的事实意味着该断裂现今可能处在蠕滑运动为主的相对稳滑状态.断裂带结构简单、走向稳定、高角度而无横向断裂切割等特点有利于断裂的蠕滑运动.
基金sponsored by Earthquake Research Project for Public Affair(2008419010)the National Natural Science Foundation of China(40374032, 40534023)+4 种基金the Basic Scientific Research Special Program of the Institute of Geology,CEA(DFIGCEA0607117)the Basic Scientific Research Fund of the State Level Institutes for Commonweal (DF-IGCEA-0607-1-17)the National Basic Research Program(2004CB418402),Chinathe National Key Basic Research Program (95-13-02-02)the Key Program of the Natural Science Foundation of China (40534023)
文摘The Ordos block is a stable tectonic unit since the Cenozoic. Whether low-resistivity layers exist in the middle and lower crust of this kind block is an open question. This work attempts to reveal the entire crustal structure of the block based on interpretation of magnetotelluric data collected along the profile across this region. The result shows that a layered structure characterizes the crust of the Ordos block, with a low-resistivity layer at depth of about 20km, presumably associated with fluids there. In contrast, in the areas of active tectonics on the east and west of the block, there are no such layered electric structures in the crust, and the low-resistivity zones may be related to the decollement zones (or ductile shear zones) in the crust. The difference in electric structure of crust between the Ordos Block and neighboring areas is of significance to analyze the movement and deformation of varied blocks in the continent.
基金supported by National Natural Science Foundation of China for Young Foundation (Grant No. 40802050)China Postdoctoral Science Foundation (Grant No. 20070420065)
文摘Here we describe ductile, ductile-brittle and brittle deformation styles in the northern segment of the Tertiary Biluoxue- shan-Chongshan shear zone lying to the east of the Eastern Himalayan Syntaxis. In the northernmost part of the zone in the vi- cinity of the Eastern Himalayan Syntaxis, it consists of mylonitic gneiss, granite, and schist. Based on field relations and min- eral assemblages, the rocks are classified into gneiss belt in the west limb, including banded gneiss, augen mylonite and mig- matite gneiss, and schist belt in the east limb. Except for the massive granite pluton, the other three tectonites are affected by polystage deformation (D1-D4). Fold deformation of the first stage D1 is isoclinal to tight pattern with nearly N-S fold axes and steeply axial planar cleavage S 1, which resulted in the local crustal thickening under a contractive setting. D2 overprinted D1 and is characterized by tight folds with steep axes and N-S fold axial planar, which are also characterized by large-scale ductile strike-slip shear foliation $2, parallel to the nearly N-S trending axial planes of D1 and D2. The structural pattern of D2 represents a transpression along the zone. D3 occurred during the late stage of the transpression or post-transpression, produc- ing the NW-SE and NE-SW trending strike-slip faults of the third stage D3. Following the D3 deformation, the zone was ex- humed to shallow crustal level where the various tectonites underwent a brittle transtensional deformation D4, combined with one N-S trending strike-slip component and one normal faulting component. Structures and previous geochronologies pre- sented in the paper suggest that the study area is correlated with those in the adjacent tectonic zones, Ailaoshan-Red River shear zone and Gaoligong shear zone in the western Yunnan. It underwent intensive polyphase deformation, namely, crustal thickening, transpression, and transtension, responding to syn-collision and post-collision of India-Eurasia from 65 Ma to cur- rent period east of the Eastern Himalayan Syntaxis.