The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ...The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.展开更多
A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simula...A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.展开更多
This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debr...This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debris flow). The grain size distribution of forty three soil samples was used to classify the soils according to the scheme of the Unified Soil Classification System(USCS). These distributions have then been used to estimate shear strength and hydraulic properties of the soils. There are clear differences between the soils which reflect their divergent origins. The glacial soils normally fit within one of two distinctive groups according to the proportion of fines(Group A, 7%-21.5%; Group B, 21%-65%). The estimation of shear strength at constant volume friction angle and peak shear strength of the glacial sediments with low content of fines was made using published data relating to the measured shear strength characteristics of soils with similar origins and grain size distributions. The estimated values were supported by measurements of the angle of repose taken from fourteen samples from two moraines and by shear tests on samples from one locality. The results of the grain size distribution werealso used to estimate the average hydraulic conductivity using the empirical Hazen formula which results were verified by field infiltration tests at two localities.展开更多
The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Thr...The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.展开更多
Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their impo...Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their importance in the quantification of the bedload rate,the collective influence of a boulder array on the approach timeaveraged and turbulent flow field has to date been overlooked.The overarching objective is,thus,to assess the collective effects of a boulder array on the time-averaged and turbulent flow fields surrounding an individual boulder within the array,placing particular emphasis on highlighting the bed shear stress spatial variability.The objective of this study is pursued by resolving and comparing the timeaveraged and turbulent flow fields developing around a boulder,with and without an array of isolated boulders being present.The results show that the effects of an individual boulder on the time-averaged streamwise velocity and turbulence intensity were limited to the boulder's immediate vicinity in the streamwise(x/d c < 2-3) and vertical(z/d c < 1) directions.Outside of the boulder's immediate vicinity,the time-averaged streamwise velocity was found to be globally decelerated.This global deceleration was attributed to the form drag generated collectively by the boulder array.More importantly,the boulder array reduced the applied shear stress exerted on theindividual boulders found within the array,by absorbing a portion of the total applied shear.Furthermore,the array was found to have a "homogenizing" effect on the near-bed turbulence thus significantly reducing the turbulence intensity in the near-bed region.The findings of this study suggest that the collective boulder array bears a portion of the total applied bed shear stress as form drag,hence reducing the available bed shear stress for transporting incoming mobile sediment.Thus,the effects of the boulder array should not be ignored in sediment transport predictions.These effects are encapsulated in this study by Equation(6).展开更多
The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and t...The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.展开更多
To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic ...To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic loading in the future, a research project was carried out aimed at developing a simple and high strength seismic retrofitting technique for masonry structures. A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted. The results indicated that both the strength and ductility of the tested speci-mens were significantly enhanced with the technique. An analytical model which is based on Dis-tinct Element Method (DEM) has also been developed to simulate the behaviour of URM walls be-fore and after retrofitting. The model is then further developed by applying a seismic wave to the wall to simulate the wall behavior under earthquake loads before and after retrofitting.展开更多
The tensile and shear strength of intrinsic bolting support systems has always been a major concern of designers. A comprehensive laboratory testing program was designed to evaluate the tensile and shear strength of i...The tensile and shear strength of intrinsic bolting support systems has always been a major concern of designers. A comprehensive laboratory testing program was designed to evaluate the tensile and shear strength of individual wires and completely wound PC-strand cables. PC-strand cables with smooth wires and the recent anchorage enhancement innovation of indentation were evaluated and compared. The testing protocol detailed in ISO Standard 15630 utilizes a mandrel system that was investigated at 3different diameters which alters the wire to mandrel ratio from 2:1 to 9:1. The results demonstrate that the difference between smooth and indented wires is statistically insignificant when larger diameter mandrels are used,and that indentation does not adversely affect strand properties and performance.Insight into the shearing mechanism and evaluation techniques are discussed with the introduction of triaxial loading to describe the PC-strand tensile and shearing mechanisms. Another important result indicates that the shear strength of PC-strand cable bolting systems has a greater shear strength value than traditional steel bar bolting systems.展开更多
This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triax...This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to produce the pre-crushed sands in simulating the high- pressure shear process on soil to result in particle breakage, and then the pre-crushed sands were re- sheared in series of drained triaxial tests to investigate the mobilized strengths of the pre-crushed sands in detecting the influence of particle breakage. It was found that, by deteriorating strain-stress behavior, particle breakage resulted in change of stress-dilataney behavior in translation and rotation of the relation of the dilatancy factor and the effective principal stress ratio. For a given initial void ratio, particle breakage resulted in impairment of dilatancy behavior of soil to be more contractive in deterioration of the mobilized friction angle and the mobilized dilatancy angle and reduction of void ratio. However, particle breakage resulted in increase of the mobilized basic friction angle especially before failure. In addition, the influence of particle breakage on the mobilized strengths was revealed to be influenced by the shear stress-strain state.展开更多
In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,a...In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.展开更多
A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity fa...A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip. With the equivalent crack length Ieq of the wing crack introduced, the stress intensity factor Kl at the wing crack tip was as- sumed to the sum of two terms: on one hand a component K1^(1) for a single isolated straight wing crack of length 21, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K1(2) due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses.展开更多
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w...This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.展开更多
The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by bind...The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.展开更多
Very high concentration of flexural, shear and torsional stresses occurs at the wall-slab junctions in a laterally loaded tall building consisting of planar walls and coupling slabs. Due to this concentration of stres...Very high concentration of flexural, shear and torsional stresses occurs at the wall-slab junctions in a laterally loaded tall building consisting of planar walls and coupling slabs. Due to this concentration of stresses and their interaction, there are great chances of failure to occur at the junction. Also the flexural stresses are not uniformly distributed and have the highest intensity near the periphery of inner walls but are reduced drastically as we move away from the wall-slab junction. Numerous attempts have been made to strengthen the wall-slab junction by using various types of shear reinforcement to ensure that shear failure should not occur. Various methods including fibre reinforcement consisting of twins of twisted steel couplets have already been used. This paper describes a new method of placing 2 inch wide flange I-sections at appropriate locations to improve the shear strength of the wall-slab junctions. Based on systematic research, a new procedure has also been developed to assess the strength of wall-slab junction using the new reinforcement method. Test results showed that a substantial increase, up to 57%, in the shear strength of specimens was obtained by using the new method of shear reinforcement in a laterally loaded tall building.展开更多
The last two to three decades have seen significant advances in the mechanics of unsaturated soils.It is now widely recognized that the fundamental principles in soil mechanics must cover both saturated and unsaturate...The last two to three decades have seen significant advances in the mechanics of unsaturated soils.It is now widely recognized that the fundamental principles in soil mechanics must cover both saturated and unsaturated soils.Nevertheless,there is still a great deal of uncertainties in the geotechnical community about how soil mechanics principles well-established for saturated soils can be extended to unsaturated soils.There is even wide skepticism about the necessity of such extension in engineering practice.This paper discusses some common pitfalls related to the fundamental principles that govern the volume change,shear strength and hydromechanical behaviour of unsaturated soils.It also attempts to address the issue of engineering relevance of unsaturated soil mechanics.展开更多
Finite element method(FEM) was used to investigate the effect of the number of layers on the bond strength for the brittle coating/substrate materials at contact load condition,which has not been addressed previously....Finite element method(FEM) was used to investigate the effect of the number of layers on the bond strength for the brittle coating/substrate materials at contact load condition,which has not been addressed previously.The maximum shear stress was used to act as the criterion of the bonded strength.This paper discussed the relationship between the number of coating layers and the maximum shear stress of the layer/substrate interface.Firstly,the results of the FEM and the Hertz analytical method were compared to verify the accuracy of the FEM model.It was found that with the increase in the number of coating layers,the position of the suddenly changed stress along the z axis is transformed from the interface to the external surface of the coating.Finally,the increase in the number of layers contributes to the decrement of the stress along the x axis.展开更多
基金Project(2014M562447) supported by the China Postdoctoral Science FoundationProject(51275416) supported by the National Natural Science Foundation of China+1 种基金Project(BP201503) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)China
文摘The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.
基金support he received through General Research Project under the grant number (R.G.P.2/138/42)。
文摘A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.
基金Financial support for the contribution was provided by Grant Agency of the Czech Republic (Project No. GACR P209/11/1000)
文摘This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debris flow). The grain size distribution of forty three soil samples was used to classify the soils according to the scheme of the Unified Soil Classification System(USCS). These distributions have then been used to estimate shear strength and hydraulic properties of the soils. There are clear differences between the soils which reflect their divergent origins. The glacial soils normally fit within one of two distinctive groups according to the proportion of fines(Group A, 7%-21.5%; Group B, 21%-65%). The estimation of shear strength at constant volume friction angle and peak shear strength of the glacial sediments with low content of fines was made using published data relating to the measured shear strength characteristics of soils with similar origins and grain size distributions. The estimated values were supported by measurements of the angle of repose taken from fourteen samples from two moraines and by shear tests on samples from one locality. The results of the grain size distribution werealso used to estimate the average hydraulic conductivity using the empirical Hazen formula which results were verified by field infiltration tests at two localities.
基金Project(40672178) supported by the National Natural Science Foundation of ChinaProject(2004844009) supported by the Chinese Scholarship Council
文摘The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.
基金supported by the United States National Science Foundation (Grant No. CBET1033732)
文摘Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their importance in the quantification of the bedload rate,the collective influence of a boulder array on the approach timeaveraged and turbulent flow field has to date been overlooked.The overarching objective is,thus,to assess the collective effects of a boulder array on the time-averaged and turbulent flow fields surrounding an individual boulder within the array,placing particular emphasis on highlighting the bed shear stress spatial variability.The objective of this study is pursued by resolving and comparing the timeaveraged and turbulent flow fields developing around a boulder,with and without an array of isolated boulders being present.The results show that the effects of an individual boulder on the time-averaged streamwise velocity and turbulence intensity were limited to the boulder's immediate vicinity in the streamwise(x/d c < 2-3) and vertical(z/d c < 1) directions.Outside of the boulder's immediate vicinity,the time-averaged streamwise velocity was found to be globally decelerated.This global deceleration was attributed to the form drag generated collectively by the boulder array.More importantly,the boulder array reduced the applied shear stress exerted on theindividual boulders found within the array,by absorbing a portion of the total applied shear.Furthermore,the array was found to have a "homogenizing" effect on the near-bed turbulence thus significantly reducing the turbulence intensity in the near-bed region.The findings of this study suggest that the collective boulder array bears a portion of the total applied bed shear stress as form drag,hence reducing the available bed shear stress for transporting incoming mobile sediment.Thus,the effects of the boulder array should not be ignored in sediment transport predictions.These effects are encapsulated in this study by Equation(6).
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 74 0 34)
文摘The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.
文摘To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic loading in the future, a research project was carried out aimed at developing a simple and high strength seismic retrofitting technique for masonry structures. A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted. The results indicated that both the strength and ductility of the tested speci-mens were significantly enhanced with the technique. An analytical model which is based on Dis-tinct Element Method (DEM) has also been developed to simulate the behaviour of URM walls be-fore and after retrofitting. The model is then further developed by applying a seismic wave to the wall to simulate the wall behavior under earthquake loads before and after retrofitting.
文摘The tensile and shear strength of intrinsic bolting support systems has always been a major concern of designers. A comprehensive laboratory testing program was designed to evaluate the tensile and shear strength of individual wires and completely wound PC-strand cables. PC-strand cables with smooth wires and the recent anchorage enhancement innovation of indentation were evaluated and compared. The testing protocol detailed in ISO Standard 15630 utilizes a mandrel system that was investigated at 3different diameters which alters the wire to mandrel ratio from 2:1 to 9:1. The results demonstrate that the difference between smooth and indented wires is statistically insignificant when larger diameter mandrels are used,and that indentation does not adversely affect strand properties and performance.Insight into the shearing mechanism and evaluation techniques are discussed with the introduction of triaxial loading to describe the PC-strand tensile and shearing mechanisms. Another important result indicates that the shear strength of PC-strand cable bolting systems has a greater shear strength value than traditional steel bar bolting systems.
基金The financial assistance by China Scholarship Council (Grant No. 2011671035)the National Basic Research Program of China (973 Program) (Grant No. 2013CB733201)+3 种基金Key Program of Chinese Academy of Sciences (Grant No. KZZDEW-05-01)One-Hundred Talents Program of Chinese Academy of Sciences (SU Li-jun)CAS "Light of West China" Program (Grant No. Y6R2250250)Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to produce the pre-crushed sands in simulating the high- pressure shear process on soil to result in particle breakage, and then the pre-crushed sands were re- sheared in series of drained triaxial tests to investigate the mobilized strengths of the pre-crushed sands in detecting the influence of particle breakage. It was found that, by deteriorating strain-stress behavior, particle breakage resulted in change of stress-dilataney behavior in translation and rotation of the relation of the dilatancy factor and the effective principal stress ratio. For a given initial void ratio, particle breakage resulted in impairment of dilatancy behavior of soil to be more contractive in deterioration of the mobilized friction angle and the mobilized dilatancy angle and reduction of void ratio. However, particle breakage resulted in increase of the mobilized basic friction angle especially before failure. In addition, the influence of particle breakage on the mobilized strengths was revealed to be influenced by the shear stress-strain state.
基金supported by the State Key Development Program for Basic Research of China(No.2013CB036003)the National Natural Science Foundation of China(No.51374198)the CUMT Innovation and Entrepreneurship Fund for Undergraduates(No.201509)
文摘In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.
基金Supported by the National Basic Research Program of China(2007CB209400) Hunan Provincial Natural Science Foundation of China(10JJ3007)
文摘A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip. With the equivalent crack length Ieq of the wing crack introduced, the stress intensity factor Kl at the wing crack tip was as- sumed to the sum of two terms: on one hand a component K1^(1) for a single isolated straight wing crack of length 21, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K1(2) due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses.
文摘This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.
文摘The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.
文摘Very high concentration of flexural, shear and torsional stresses occurs at the wall-slab junctions in a laterally loaded tall building consisting of planar walls and coupling slabs. Due to this concentration of stresses and their interaction, there are great chances of failure to occur at the junction. Also the flexural stresses are not uniformly distributed and have the highest intensity near the periphery of inner walls but are reduced drastically as we move away from the wall-slab junction. Numerous attempts have been made to strengthen the wall-slab junction by using various types of shear reinforcement to ensure that shear failure should not occur. Various methods including fibre reinforcement consisting of twins of twisted steel couplets have already been used. This paper describes a new method of placing 2 inch wide flange I-sections at appropriate locations to improve the shear strength of the wall-slab junctions. Based on systematic research, a new procedure has also been developed to assess the strength of wall-slab junction using the new reinforcement method. Test results showed that a substantial increase, up to 57%, in the shear strength of specimens was obtained by using the new method of shear reinforcement in a laterally loaded tall building.
基金supported by the National Natural Science Foundation of China(Grant No.51208519)
文摘The last two to three decades have seen significant advances in the mechanics of unsaturated soils.It is now widely recognized that the fundamental principles in soil mechanics must cover both saturated and unsaturated soils.Nevertheless,there is still a great deal of uncertainties in the geotechnical community about how soil mechanics principles well-established for saturated soils can be extended to unsaturated soils.There is even wide skepticism about the necessity of such extension in engineering practice.This paper discusses some common pitfalls related to the fundamental principles that govern the volume change,shear strength and hydromechanical behaviour of unsaturated soils.It also attempts to address the issue of engineering relevance of unsaturated soil mechanics.
基金supported by the National Natural Science Foundation of China (Grant No. 51005102)Postdoctoral Science Foundation of Jiangsu Province (Grant No. 1002028C)+1 种基金Postdoctoral Science Foundation of China (Grant No. 20110491366)the State Key Laboratory of Tribology of Tsinghua University (Grant No. SKLTKF10B04)
文摘Finite element method(FEM) was used to investigate the effect of the number of layers on the bond strength for the brittle coating/substrate materials at contact load condition,which has not been addressed previously.The maximum shear stress was used to act as the criterion of the bonded strength.This paper discussed the relationship between the number of coating layers and the maximum shear stress of the layer/substrate interface.Firstly,the results of the FEM and the Hertz analytical method were compared to verify the accuracy of the FEM model.It was found that with the increase in the number of coating layers,the position of the suddenly changed stress along the z axis is transformed from the interface to the external surface of the coating.Finally,the increase in the number of layers contributes to the decrement of the stress along the x axis.