This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their impo...Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their importance in the quantification of the bedload rate,the collective influence of a boulder array on the approach timeaveraged and turbulent flow field has to date been overlooked.The overarching objective is,thus,to assess the collective effects of a boulder array on the time-averaged and turbulent flow fields surrounding an individual boulder within the array,placing particular emphasis on highlighting the bed shear stress spatial variability.The objective of this study is pursued by resolving and comparing the timeaveraged and turbulent flow fields developing around a boulder,with and without an array of isolated boulders being present.The results show that the effects of an individual boulder on the time-averaged streamwise velocity and turbulence intensity were limited to the boulder's immediate vicinity in the streamwise(x/d c < 2-3) and vertical(z/d c < 1) directions.Outside of the boulder's immediate vicinity,the time-averaged streamwise velocity was found to be globally decelerated.This global deceleration was attributed to the form drag generated collectively by the boulder array.More importantly,the boulder array reduced the applied shear stress exerted on theindividual boulders found within the array,by absorbing a portion of the total applied shear.Furthermore,the array was found to have a "homogenizing" effect on the near-bed turbulence thus significantly reducing the turbulence intensity in the near-bed region.The findings of this study suggest that the collective boulder array bears a portion of the total applied bed shear stress as form drag,hence reducing the available bed shear stress for transporting incoming mobile sediment.Thus,the effects of the boulder array should not be ignored in sediment transport predictions.These effects are encapsulated in this study by Equation(6).展开更多
This paper presents methods for determining the basic geometry of end-gear with arc tooth external diameter, width of tooth, end module, number of teeth, pressure angle, tooth, tooth clearance parameters; at the same ...This paper presents methods for determining the basic geometry of end-gear with arc tooth external diameter, width of tooth, end module, number of teeth, pressure angle, tooth, tooth clearance parameters; at the same time gives the tooth bearing strength calculation method, and the formulas to calculate the tooth shear stress, surface stress and bolt fastening force of equivalent stress is established; finally write the software error simulation analysis.展开更多
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
基金supported by the United States National Science Foundation (Grant No. CBET1033732)
文摘Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their importance in the quantification of the bedload rate,the collective influence of a boulder array on the approach timeaveraged and turbulent flow field has to date been overlooked.The overarching objective is,thus,to assess the collective effects of a boulder array on the time-averaged and turbulent flow fields surrounding an individual boulder within the array,placing particular emphasis on highlighting the bed shear stress spatial variability.The objective of this study is pursued by resolving and comparing the timeaveraged and turbulent flow fields developing around a boulder,with and without an array of isolated boulders being present.The results show that the effects of an individual boulder on the time-averaged streamwise velocity and turbulence intensity were limited to the boulder's immediate vicinity in the streamwise(x/d c < 2-3) and vertical(z/d c < 1) directions.Outside of the boulder's immediate vicinity,the time-averaged streamwise velocity was found to be globally decelerated.This global deceleration was attributed to the form drag generated collectively by the boulder array.More importantly,the boulder array reduced the applied shear stress exerted on theindividual boulders found within the array,by absorbing a portion of the total applied shear.Furthermore,the array was found to have a "homogenizing" effect on the near-bed turbulence thus significantly reducing the turbulence intensity in the near-bed region.The findings of this study suggest that the collective boulder array bears a portion of the total applied bed shear stress as form drag,hence reducing the available bed shear stress for transporting incoming mobile sediment.Thus,the effects of the boulder array should not be ignored in sediment transport predictions.These effects are encapsulated in this study by Equation(6).
文摘This paper presents methods for determining the basic geometry of end-gear with arc tooth external diameter, width of tooth, end module, number of teeth, pressure angle, tooth, tooth clearance parameters; at the same time gives the tooth bearing strength calculation method, and the formulas to calculate the tooth shear stress, surface stress and bolt fastening force of equivalent stress is established; finally write the software error simulation analysis.