Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining th...Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties.展开更多
The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surface...The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surfaces)along the lowest energy path can provide a great deal of information on the nucleation and movement of dislocations.With the first-principles calculation,the interplay between Re and W,Mo,Ta,Ti doped at preferential sites and their synergetic influence on Γ-surfaces and ideal shear strength(τ_(max))in γ'-Ni_(3)Al phases are investigated.Similar to single Re-addition,the Suzuki segregation of W at stacking faults is demonstrated to enable to impede the movement of 1/6<112>{111} Shockley partial dislocations and promote the cross-slip of 1/2<110>{111}super-partial dislocations.With the replacement of a part of Re by W,a decreased γ_(APB)^(111)/γ_(APB)^(001) indicates that the anomalous flow behavior of γ'phases at high temperature is not as excellent as the double Re-addition,but an increasedτmax means that the creep rupture strength of Ni-based single crystal superalloys can be benefited from this replacement to some extent,especially in the co-segregation of Re and W at Al−Al sites.As the interaction between X1_(Al) and X2_(Al) point defects is characterized by an correlation energy function ΔE^(X1_(Al)+X2_(Al))(d),it is found that both strong attraction and strong repulsion are unfavarable for the improvement of yield strengths of γ'phase.展开更多
To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the...To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the effects of wall and rarefaction are considered in the correction of relaxation time. The results of gas velocity distributions are compared among the MRT, Monte Carlo model(DSMC) and high-order LBM, and the effects of the tangential momentum accommodation coefficient on the gas velocity distributions are also compared between the MRT and the high-order LBM. It is indicated that the amendatory MRT-LBM can unlock the dilemma of simulation of micro-scale non-equilibrium. Finally, the effects of the Knudsen number, the Stokes number, and the gap between the plates on the damping are researched. The results show that by decreasing the Knudsen number or increasing the Stokes number, the slide film damping increases in the transition regime;however, as the size of the gap increases, the slide film damping decreases substantially.展开更多
The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the ...The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.展开更多
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to cha...A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.展开更多
基金Project(2017XKZD09)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties.
基金the financial supports from the National Natural Science Foundation of China(Nos.51871096,52071136).
文摘The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surfaces)along the lowest energy path can provide a great deal of information on the nucleation and movement of dislocations.With the first-principles calculation,the interplay between Re and W,Mo,Ta,Ti doped at preferential sites and their synergetic influence on Γ-surfaces and ideal shear strength(τ_(max))in γ'-Ni_(3)Al phases are investigated.Similar to single Re-addition,the Suzuki segregation of W at stacking faults is demonstrated to enable to impede the movement of 1/6<112>{111} Shockley partial dislocations and promote the cross-slip of 1/2<110>{111}super-partial dislocations.With the replacement of a part of Re by W,a decreased γ_(APB)^(111)/γ_(APB)^(001) indicates that the anomalous flow behavior of γ'phases at high temperature is not as excellent as the double Re-addition,but an increasedτmax means that the creep rupture strength of Ni-based single crystal superalloys can be benefited from this replacement to some extent,especially in the co-segregation of Re and W at Al−Al sites.As the interaction between X1_(Al) and X2_(Al) point defects is characterized by an correlation energy function ΔE^(X1_(Al)+X2_(Al))(d),it is found that both strong attraction and strong repulsion are unfavarable for the improvement of yield strengths of γ'phase.
基金The National Natural Science Foundation of China(No.51375091)
文摘To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM) is proposed. Through the Knudsen boundary layer model, the effects of wall and rarefaction are considered in the correction of relaxation time. The results of gas velocity distributions are compared among the MRT, Monte Carlo model(DSMC) and high-order LBM, and the effects of the tangential momentum accommodation coefficient on the gas velocity distributions are also compared between the MRT and the high-order LBM. It is indicated that the amendatory MRT-LBM can unlock the dilemma of simulation of micro-scale non-equilibrium. Finally, the effects of the Knudsen number, the Stokes number, and the gap between the plates on the damping are researched. The results show that by decreasing the Knudsen number or increasing the Stokes number, the slide film damping increases in the transition regime;however, as the size of the gap increases, the slide film damping decreases substantially.
文摘The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1262103,11302218 and 11172289)Anhui Provincial Natural Science Foundation(Grant Nos.1308085QA10 and 1408085J08)the Fundamental Research Funds for the Central Universities of China
文摘A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.