For a deeper understanding of the shear resistance performance of the steel-concrete-steel composite shear wall, the main influence factors such as the thicknesses of the steel plates and the concrete, the strength gr...For a deeper understanding of the shear resistance performance of the steel-concrete-steel composite shear wall, the main influence factors such as the thicknesses of the steel plates and the concrete, the strength grades of the concrete and the span-depth ratios of the composite wall, which have impacts on the shear resistance performance of the composite shear wail, are analyzed by the numerical simulation method. Meanwhile, the simplified calculation formulae of the initial elastic lateral-resisting stiffness and the shear bearing capacity of the composite shear wall are also proposed. The research shows that with the increase in the thicknesses of the steel plates and the concrete and the increase in the strength grades of the concrete, the shear performance of the shear wall improves obviously; the span-depth ratios of the composite wall have a significant effect on the initial elastic lateral- resisting stiffness, but a small effect on the shear bearing capacity. Comparing the results of the simplified calculation formulae with those of the nonlinear finite element method, it is obvious that the presented formulae are reasonable and meet the real force state of the structure. These conclusions can serve as a preliminary design reference for the steel-concrete- steel composite shear wall.展开更多
The influence of pH on the rheological properties of concentrated alumina suspensions was investigated. At various pH values, the alumina exhibited pseudoplastic, near Bingham flow behaviors. The fully-deflocculated s...The influence of pH on the rheological properties of concentrated alumina suspensions was investigated. At various pH values, the alumina exhibited pseudoplastic, near Bingham flow behaviors. The fully-deflocculated suspensions exhibited Newtonian flow behaviors, while the fully-flocculated suspensions demonstrated very high viscosity and shear yield stress.展开更多
基金The Basic Scientific Research Funds of Hohai University (No. B1020133)
文摘For a deeper understanding of the shear resistance performance of the steel-concrete-steel composite shear wall, the main influence factors such as the thicknesses of the steel plates and the concrete, the strength grades of the concrete and the span-depth ratios of the composite wall, which have impacts on the shear resistance performance of the composite shear wail, are analyzed by the numerical simulation method. Meanwhile, the simplified calculation formulae of the initial elastic lateral-resisting stiffness and the shear bearing capacity of the composite shear wall are also proposed. The research shows that with the increase in the thicknesses of the steel plates and the concrete and the increase in the strength grades of the concrete, the shear performance of the shear wall improves obviously; the span-depth ratios of the composite wall have a significant effect on the initial elastic lateral- resisting stiffness, but a small effect on the shear bearing capacity. Comparing the results of the simplified calculation formulae with those of the nonlinear finite element method, it is obvious that the presented formulae are reasonable and meet the real force state of the structure. These conclusions can serve as a preliminary design reference for the steel-concrete- steel composite shear wall.
基金Partly supported by Scientific Research Foundation for Returned Overseas Scholars from State Education Committee of China
文摘The influence of pH on the rheological properties of concentrated alumina suspensions was investigated. At various pH values, the alumina exhibited pseudoplastic, near Bingham flow behaviors. The fully-deflocculated suspensions exhibited Newtonian flow behaviors, while the fully-flocculated suspensions demonstrated very high viscosity and shear yield stress.