A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys...A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.展开更多
A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simul...A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively.展开更多
As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mecha...As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.展开更多
The paper introduce the construction method of large segment hosting and its difficulty, and drawing up corresponding liner and stress monitoring plan. The paper gives the calculation method of shear area for such a b...The paper introduce the construction method of large segment hosting and its difficulty, and drawing up corresponding liner and stress monitoring plan. The paper gives the calculation method of shear area for such a big cantilever thin-walled steel box girder section, namely the shear coefficient computation theory of Professor Hu Haichang, and the use of this shear area perfect beam element model, structure model and the experiment prove that the shell model is more consistent, given a certain reference for similar section project.展开更多
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject (50725413)supported by the National Natural Science Foundation of China+2 种基金Project (CQ CSTC,2010BB4301)supported by National Science Foundation of Chongqing, ChinaProject (CSTC2009AB4008) supported by Chongqing Sci & Tech Development Program, ChinaProject (2010CSTC-HDLS)supported by Chongqing Sci & Tech Commission, China
文摘A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.
基金supported by Liaoning Revitalization Talents Program, China (XLYC1807021)Joint Research Fund of Liaoning - Shenyang National Laboratory for Materials Science, China (2019JH3/30100014)+1 种基金Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang, China (RC200414)Scientific Research Fund of Liaoning Provincial Department of Education, China (LJGD2020008)
文摘A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively.
基金Project(XLYC1807021)supported by Liaoning Revitalization Talents Program,ChinaProject(2019JH3/30100014)supported by Joint Research Fund of Lianning-Shenyang National Laboratory for Materials Science,China+2 种基金Project supported by Liaoning Bai Qian Wan Talents Program,ChinaProject(RC200414)supported by Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang City,ChinaProject(XLYC1908006)supported by High Level Innovation Team of Liaoning Province,China。
文摘As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.
文摘The paper introduce the construction method of large segment hosting and its difficulty, and drawing up corresponding liner and stress monitoring plan. The paper gives the calculation method of shear area for such a big cantilever thin-walled steel box girder section, namely the shear coefficient computation theory of Professor Hu Haichang, and the use of this shear area perfect beam element model, structure model and the experiment prove that the shell model is more consistent, given a certain reference for similar section project.