期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
深部开采巷道软弱围岩塑性区和剪裂区研究 被引量:2
1
作者 楼晓明 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期276-280,共5页
考虑开挖二次应力场对圆形巷道软弱围岩的实际影响,基于双剪统一强度理论及力学原理,探讨了深部圆形巷道围岩塑性区应力及范围.考虑矿体回采爆破振动,对巷道软弱围岩弹性区域内产生的剪裂区应力进行了研究.最后,利用莫尔-库伦强度理论,... 考虑开挖二次应力场对圆形巷道软弱围岩的实际影响,基于双剪统一强度理论及力学原理,探讨了深部圆形巷道围岩塑性区应力及范围.考虑矿体回采爆破振动,对巷道软弱围岩弹性区域内产生的剪裂区应力进行了研究.最后,利用莫尔-库伦强度理论,推导了深部矿体回采爆破时巷道软弱围岩剪裂区范围,并对它进行了分析. 展开更多
关键词 塑性 爆破振动 剪裂区 应力场 巷道
原文传递
Analysis of fracture process zone in brittle rock subjected to shear-compressive loading 被引量:1
2
作者 周德泉 陈枫 +1 位作者 曹平 马春德 《Journal of Central South University of Technology》 2005年第2期209-213,共5页
An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into ... An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of K_Ⅱ to (K_Ⅰ.) The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock. 展开更多
关键词 brittle rock shear-compressive loading fracture process zone
下载PDF
Shear-wave Splitting in the Crust beneath Shandong and Its Adjacent Area
3
作者 Miao Qingjie Liu Xiqiang +3 位作者 Shi Yuyan Qu Junhao Zheng Jianchang Tian Fengdong 《Earthquake Research in China》 CSCD 2016年第4期556-565,共10页
Based on the seismic data of near-field source from the Shandong Digital Seismic Network,this study obtained the shear-wave splitting parameters from multiple stations. The results show that dominant directions of pol... Based on the seismic data of near-field source from the Shandong Digital Seismic Network,this study obtained the shear-wave splitting parameters from multiple stations. The results show that dominant directions of polarizations of fast shear-waves reflect the spatial distribution characteristics of tectonic stress in this area,CHD and LIS stations show 2 dominant directions,and reveals that the crustal seismic anisotropy in the Shandong area is constrained by the regional stress background,local failure and structure. 展开更多
关键词 Shandong area Shear-wave splitting POLARIZATION Seismic anisotropy Tectonic stress
下载PDF
Study on the S-wave Splitting Characteristics in the Longtan Reservoir Area,Guangxi,China
4
作者 Shi Haixia Zhao Cuiping 《Earthquake Research in China》 2011年第2期213-226,共14页
In this paper,the shear wave splitting features of the Longtan reservoir area are studied by adopting the traditional cross-correlation coefficient method and polarization analysis,using the data recorded by the seism... In this paper,the shear wave splitting features of the Longtan reservoir area are studied by adopting the traditional cross-correlation coefficient method and polarization analysis,using the data recorded by the seismic network founded by a project under the National Science and Technology Pillar Program from April 2009 to April 2010.We found that most of polarization directions at seismic stations are consistent with the direction of the overall regional stress field,but local structures and faults may control or influence the fast shear-wave polarization direction.The time-delay normalized to source-station path is between 10 to 25ms/km,and among them,the time-delay is about 10ms/km at the LIL and XIL sites,which are farther away from the dam.The water depth is relatively shallow and seismic activity relatively weak after water storage,indicating the effect of reservoir water penetration,or loading,on the state of cracks in the reservoir area.We also found that the delay time changes consistently with the water level at stations DPD and GAL.It may be related to crack expansion and water penetration caused by the reservoir impoundment. 展开更多
关键词 Longtan reservoir Seismic anisotropy Shear-wave splitting Fast shear-wavepolarization direction Delay time
下载PDF
Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis 被引量:17
5
作者 CHANG LiJun WANG ChunYong +3 位作者 DING ZhiFeng YOU HuiChuan LOU Hai SHAO CuiRu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第10期1872-1882,共11页
Polarization analysis of teleseismic data has been used to determine the XKS(SKS,SKKS,and PKS)fast polarization directions and delay times between fast and slow shear waves for 59 seismic stations of both temporary an... Polarization analysis of teleseismic data has been used to determine the XKS(SKS,SKKS,and PKS)fast polarization directions and delay times between fast and slow shear waves for 59 seismic stations of both temporary and permanent broadband seismograph networks deployed in the eastern Himalayan syntaxis(EHS)and surrounding regions.The analysis employed both the grid searching method of the minimum tangential energy and stacking analysis methods to develop an image of upper mantle anisotropy in the EHS and surrounding regions using the newly obtained shear wave splitting parameters and previously published results.The fast polarization directions are oriented along a NE-SW azimuth in the EHS.However,within the surrounding regions,the fast directions show a clockwise rotation pattern around the EHS from NE-SW,to E-W,to NW-SE,and then to N-S.In the EHS and surrounding regions,the fast directions of seismic anisotropy determined using shear wave splitting analysis correlate with surficial geological features including major sutures and faults and with the surface deformation fields derived from global positioning system(GPS)data.The coincidence between structural features in the crust,surface deformation fields and mantle anisotropy suggests that the deformation in the crust and lithospheric mantle is mechanically coupled.In the EHS,the coherence between the fast directions and the NE direction of the subduction of the Indian Plate beneath the Tibetan Plateau suggests that the lithospheric deformation is caused mainly by subduction.In the regions surrounding the EHS,we speculate that a westward retreat of the Burma slab could contribute to the curved anisotropy pattern.The Tibetan Plateau is acted upon by a NE-trending force due to the subduction of the Indian Plate,and also affected by a westward drag force due to the westward retreat produced by the eastward subduction of the Burma slab.The two forces contribute to a curved lithospheric deformation that results in the alignment of the upper mantle peridotite lattice parallel to the deformation direction,and thus generates a curved pattern of fast directions around the EHS. 展开更多
关键词 eastern Himalayan syntaxis shear wave splitting ANISOTROPY lithospheric deformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部