Vibrio parahaemolyticus is the leading causal agent of human acute gas- troenteritis. Real-time accurate detection means is the key to prevention and control of its spread. This study provided a novel detection strate...Vibrio parahaemolyticus is the leading causal agent of human acute gas- troenteritis. Real-time accurate detection means is the key to prevention and control of its spread. This study provided a novel detection strategy for realizing rapid and specific determination of V. parahaemolyticus by labeling its monoclonal antibody (Ab) with quantum dots (QDs). The results showed that the fluorescence of these QDs-Ab bioconjugates was quenched by graphene oxide (GO) to produce a bacteri- um capture probe. And the optimal quenched concentration of GO was 60 ng/ml. When the bacterium capture probe was exposed to the target, green color fluores- cence was turned on by releasing the QDs-Ab due to the antibody antigen combi- nation. The detection limit of V. parahaemolyticus was 104 CFU/ml based on 3 times signal-to-noise ratio. The specificity of the FRET sensor towards V. para- haemolyticus was examined by comparing with controls such as V. splendidus, V. alginolyticus, Edwardsiella tarda and Aeromonas hydrophila with the same condition. The controls couldn't cause obvious fluorescence alteration, while the target resulted in significant fluorescence enhancement. This strategy could be further used as a universal method for any bacterial determination by changing the conjugated antibod- ies in early disease diagnosis. Therefore, the sensor has good potential to expand its application to the early diagnosis and determination of bacteria.展开更多
基金Supported by Shandong Scientific and Technological Development Program(2014GHY115024)~~
文摘Vibrio parahaemolyticus is the leading causal agent of human acute gas- troenteritis. Real-time accurate detection means is the key to prevention and control of its spread. This study provided a novel detection strategy for realizing rapid and specific determination of V. parahaemolyticus by labeling its monoclonal antibody (Ab) with quantum dots (QDs). The results showed that the fluorescence of these QDs-Ab bioconjugates was quenched by graphene oxide (GO) to produce a bacteri- um capture probe. And the optimal quenched concentration of GO was 60 ng/ml. When the bacterium capture probe was exposed to the target, green color fluores- cence was turned on by releasing the QDs-Ab due to the antibody antigen combi- nation. The detection limit of V. parahaemolyticus was 104 CFU/ml based on 3 times signal-to-noise ratio. The specificity of the FRET sensor towards V. para- haemolyticus was examined by comparing with controls such as V. splendidus, V. alginolyticus, Edwardsiella tarda and Aeromonas hydrophila with the same condition. The controls couldn't cause obvious fluorescence alteration, while the target resulted in significant fluorescence enhancement. This strategy could be further used as a universal method for any bacterial determination by changing the conjugated antibod- ies in early disease diagnosis. Therefore, the sensor has good potential to expand its application to the early diagnosis and determination of bacteria.