The by products from the dehydration of exo 2 camphanol in the camphor manufacture by hydration process contains two unknown components: A in 14% and B in 15%. The sample mixture containing 90% A and B with different ...The by products from the dehydration of exo 2 camphanol in the camphor manufacture by hydration process contains two unknown components: A in 14% and B in 15%. The sample mixture containing 90% A and B with different mass ratio(ca. 1∶1, 1∶2 and 1∶4) were collected by further fine fractional distillation with 60 plate number for spectroscopic characterization. The combined spectral results of GC, MS and 13 C NMR of the samples revealed that A is exo 2,2,3 trimethylbicyclo[2,2,1]heptane(exo isocamphane) and B is endo 2,2,3 trimethylbicyclo[2,2,1]heptane(endo isocomphane).展开更多
A S-containing additive, sulfuration modified rapeseed oil (named as SRO), was prepared by chemical modification of rapeseed oil with sulfur compounds. The results indicate that the friction and wear of the magnesiu...A S-containing additive, sulfuration modified rapeseed oil (named as SRO), was prepared by chemical modification of rapeseed oil with sulfur compounds. The results indicate that the friction and wear of the magnesium alloy-steel tribomates could be effectively reduced by formulating SRO into rapeseed oil lubricant. The friction coefficients and the wear volumes of magnesium alloy decrease with increasing contents of SRO. The surface lubricated with SRO-doped rapeseed oil was characterized by less wear as compared with that lubricated with neat rapeseed oil. The enhanced anti-wear and friction-reducing abilities of rapeseed oil by SRO in the lubrication of magnesium alloy against steel were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of SRO and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with magnesium alloy.展开更多
As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic pr...As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic properties of ET and the resulted COPNAR were characterized by FT-IR, IH-NMR, TGA and elemental analysis. The test results showed that ET with high aromatic content (〉50%) was suitable for the synthesis of COPNAR with superior heat resistance. The average molecular structure of ET was obtained by means of the improved Brown-Ladner method, and the reaction mechanism was considered as an acid-catalyzed positive ion-typed polymerization. Our findings have provided a new route to develop ET into technology-added heat-resistant resins.展开更多
Transesterification is the most common production process for biodiesel. From this reaction, a glycerin phase is produced that is impure, thus lowering market value. However, because it is rich in carbon, it is an alt...Transesterification is the most common production process for biodiesel. From this reaction, a glycerin phase is produced that is impure, thus lowering market value. However, because it is rich in carbon, it is an alternative for generating bioproducts with a higher added value through bioconversion by microorganisms. The aim of this study was to screen parameters, such as pH (4, 5, 6, 7 and 8) and the initial glycerol concentration at 30 ± ℃ with agitation at 150 rpm for bioemulsifier and lipid synthesis in a submerged medium by Yarrowia lipolytica IMUFRJ 50678 from crude glycerin. The best conditions for bioemulsifier production were 30 ± ℃ at pH: 6 with 50 g/L of initial substrate, which produced 2.7 g/L of lipids, from which the optimum 300.5 mg/L of triglycerides was produced over 48 h of microorganism growth.展开更多
Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was mea...Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was measured.Through the UV spectral measurements the difference in UV absorbance of the lubricating oil before and after the adsorptive experiments was identified,the adsorbed quantity of anticorrosion additive in the interfacial film between lubricating oil and bearing was calculated using the Lambert-Bell principle to verify the adsorption of corrosion inhibitor on the surface of friction pairs.Adsorption experiments on lubricating oil containing both antiwear and anticorrosion additives were carried out and the UV absorbance of lubricating oil samples before and after the experiments was measured to determine the difference in the UV absorbance among lubricating oil samples with the same mass fraction of anticorrosion additive and different mass fractions of antiwear additive.By measuring the ultraviolet spectral absorbance of lubricating oil samples and calculating the adsorbed quantity of anticorrosion additive in the interfacial film it was possible to determine the influence of antiwear additive on the quantity of adsorbed anticorrosion additive on the surface of friction pairs and verify the competitive adsorption relationship between the antiwear additive and the anticorrosion additive.展开更多
文摘The by products from the dehydration of exo 2 camphanol in the camphor manufacture by hydration process contains two unknown components: A in 14% and B in 15%. The sample mixture containing 90% A and B with different mass ratio(ca. 1∶1, 1∶2 and 1∶4) were collected by further fine fractional distillation with 60 plate number for spectroscopic characterization. The combined spectral results of GC, MS and 13 C NMR of the samples revealed that A is exo 2,2,3 trimethylbicyclo[2,2,1]heptane(exo isocamphane) and B is endo 2,2,3 trimethylbicyclo[2,2,1]heptane(endo isocomphane).
基金Project (50975282) supported by the National Natural Science Foundation of China
文摘A S-containing additive, sulfuration modified rapeseed oil (named as SRO), was prepared by chemical modification of rapeseed oil with sulfur compounds. The results indicate that the friction and wear of the magnesium alloy-steel tribomates could be effectively reduced by formulating SRO into rapeseed oil lubricant. The friction coefficients and the wear volumes of magnesium alloy decrease with increasing contents of SRO. The surface lubricated with SRO-doped rapeseed oil was characterized by less wear as compared with that lubricated with neat rapeseed oil. The enhanced anti-wear and friction-reducing abilities of rapeseed oil by SRO in the lubrication of magnesium alloy against steel were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of SRO and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with magnesium alloy.
基金supported by the Program for New Century Excellent Talents in University, China Ministry of Education, 2009 (No. NCET-10-0768)the National Natural Science Foundation of China (Nos. 20876176 and 51172285)the Natural Science Foundation of Shandong Province (ZR2011EL031, ZR2011EL030)
文摘As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic properties of ET and the resulted COPNAR were characterized by FT-IR, IH-NMR, TGA and elemental analysis. The test results showed that ET with high aromatic content (〉50%) was suitable for the synthesis of COPNAR with superior heat resistance. The average molecular structure of ET was obtained by means of the improved Brown-Ladner method, and the reaction mechanism was considered as an acid-catalyzed positive ion-typed polymerization. Our findings have provided a new route to develop ET into technology-added heat-resistant resins.
文摘Transesterification is the most common production process for biodiesel. From this reaction, a glycerin phase is produced that is impure, thus lowering market value. However, because it is rich in carbon, it is an alternative for generating bioproducts with a higher added value through bioconversion by microorganisms. The aim of this study was to screen parameters, such as pH (4, 5, 6, 7 and 8) and the initial glycerol concentration at 30 ± ℃ with agitation at 150 rpm for bioemulsifier and lipid synthesis in a submerged medium by Yarrowia lipolytica IMUFRJ 50678 from crude glycerin. The best conditions for bioemulsifier production were 30 ± ℃ at pH: 6 with 50 g/L of initial substrate, which produced 2.7 g/L of lipids, from which the optimum 300.5 mg/L of triglycerides was produced over 48 h of microorganism growth.
文摘Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was measured.Through the UV spectral measurements the difference in UV absorbance of the lubricating oil before and after the adsorptive experiments was identified,the adsorbed quantity of anticorrosion additive in the interfacial film between lubricating oil and bearing was calculated using the Lambert-Bell principle to verify the adsorption of corrosion inhibitor on the surface of friction pairs.Adsorption experiments on lubricating oil containing both antiwear and anticorrosion additives were carried out and the UV absorbance of lubricating oil samples before and after the experiments was measured to determine the difference in the UV absorbance among lubricating oil samples with the same mass fraction of anticorrosion additive and different mass fractions of antiwear additive.By measuring the ultraviolet spectral absorbance of lubricating oil samples and calculating the adsorbed quantity of anticorrosion additive in the interfacial film it was possible to determine the influence of antiwear additive on the quantity of adsorbed anticorrosion additive on the surface of friction pairs and verify the competitive adsorption relationship between the antiwear additive and the anticorrosion additive.