介绍了一种新的切实可行的能量俘获方法,即通过压电结构的力/电转换功能从环境振动中提取能量,实现微电子器件的无线供能.这种由压电结构制作的能从环境振动中提取能量的声波器件称为压电俘能器,可分为两类:一类是压电结构在环境振动激...介绍了一种新的切实可行的能量俘获方法,即通过压电结构的力/电转换功能从环境振动中提取能量,实现微电子器件的无线供能.这种由压电结构制作的能从环境振动中提取能量的声波器件称为压电俘能器,可分为两类:一类是压电结构在环境振动激励下所输出的功率直接供给微电子器件工作,不进行能量储存,这类俘能器称为第一类压电俘能器(piezoelectric power harvester);另一类是环境振动较弱,压电结构的输出功率低于器件的瞬时耗能,考虑到某些器件大部分时间处于休眠状态,而俘能器却随时可以从环境振动中提取能量,因此经过一段时间的能量累积后,由俘能器所储存的能量仍能满足器件的短期工作耗能.显然,这类俘能器需要具备能量储存功能,称为第二类压电俘能器(piezoelectric energy harvester).本文详细介绍了压电俘能器结构以及两类俘能器的不同分析方法,阐述了提高俘能效率的有效措施并揭示了相关的改进机理,对压电俘能器的设计和应用具有重要意义.展开更多
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip...The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.展开更多
A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhe...A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.展开更多
A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed cou...A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.展开更多
We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the t...We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.展开更多
In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)...In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4^(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4^(2-), SeO_3^(2-), and AsO_4^-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L^(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R^2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R^2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g^(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.展开更多
We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolution...We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolutions are studied under various photon numbers of cavity field. The results show that the amplitude and period of the bipartite entanglement square concurrences can be controlled by the choice of initial states of SCQs and photon number of cavity field, respectively. This simple model of a quantum register allows us to understand the dynamic process of the quantum storage of information carried by charge qubit.展开更多
A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate ...A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate for energy-storage in a night operation mode when the electric power supply is at its valley.Comparison of the performance of the new system,the solar thermal regeneration system and the solar electrodialysis regeneration system are made and the influential factors of the performance of the new system are investigated.The results reveal that the new system will be more energy efficient than the solar thermal regeneration system and the solar electrodialysis regeneration system.展开更多
There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter(SAPF),which has a great influence on the reasonable selection of various parameter values.By analy...There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter(SAPF),which has a great influence on the reasonable selection of various parameter values.By analyzing the calculation methods of the inductance of alternating current(AC)side and the voltage and capacitance values of direct current(DC)side in the existing single/three-phase SAPF main circuit,a specific single-phase SAPF circuit parameter analytical expression was obtained.Aiming at the coupling relationship among the variables in the resulting expression,the model was optimized and analyzed in MATLAB,and a complete set of parameters design scheme was obtained,which ensure the comprehensive optimization target of the post-harmonic content below 2% is compensated under a specific load.The simulation and experimental procedures verify the correctness of the selected parameters.展开更多
Electmmechanical coupling system is one of the key technologies of hybrid electric vehicles. Among the existing electromechanical coupling systems, ISG system is recognized as the most practical one with the highest i...Electmmechanical coupling system is one of the key technologies of hybrid electric vehicles. Among the existing electromechanical coupling systems, ISG system is recognized as the most practical one with the highest integration. However, the efficiency of ISG system is relatively low in pure-motor-drive mode. In this paper, a hybrid drivetrain with double clutches was proposed, in which a mode-clutch was installed between engine and motor as the mode switch, thus the efficiency in pure-motor-drive mode was improved. This paper discussed the architecture, modeling and control strategy of double-clutch drivetrain. The results of co-simulation by Cruise and Simulink showed that the fuel economy of the vehicle with this drivetrain was effectively improved compared to similar conventional vehicles.展开更多
Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electri...Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.展开更多
The development of non‐precious metal catalysts that facilitate the oxygen evolution reaction(OER)is important for the widespread application of hydrogen production by water splitting.Various perovskite oxides have b...The development of non‐precious metal catalysts that facilitate the oxygen evolution reaction(OER)is important for the widespread application of hydrogen production by water splitting.Various perovskite oxides have been employed as active OER catalysts,however,the underlying mechanism that occurs at the catalyst‐electrolyte interface is still not well understood,prohibiting the design and preparation of advanced OER catalysts.Here,we report a systematic investigation into the effect of proton dynamics on the catalyst‐electrolyte interfaces of four perovskite catalysts:La_(0.5)Sr_(0.5)CoO_(3‐δ)(LSCO),LaCoO_(3),LaFeO_(3),and LaNiO_(3).The pH‐dependent OER activities,H/D kinetic isotope effect,and surface functionalization with phosphate anion groups were investigated to elucidate the role of proton dynamics in the rate‐limiting steps of the OER.For oxides with small charge‐transfer energies,such as LSCO and LaNiO_(3),non‐concerted proton‐coupled electron transfer steps are involved in the OER,and the activity is strongly controlled by the proton dynamics on the catalyst surface.The results demonstrate the important role of interfacial proton transfer in the OER mechanism,and suggest that proton dynamics at the interface should carefully be considered in the design of future high‐performance catalysts.展开更多
We investigate the in-medium interparticle potential of hot gauge system with bound states by employing the QED and scalar QED coupling. At the finite temperature an oscillatory behavior of the potential has been foun...We investigate the in-medium interparticle potential of hot gauge system with bound states by employing the QED and scalar QED coupling. At the finite temperature an oscillatory behavior of the potential has been found as well as its variation in terms of different free parameters. We expect the competition among the parameters will lead to an appropriate interparticle potential, which could be extended to discuss the fluid properties of QGP with scalar bound states.展开更多
This paper reports the piezoresistive effect of a resonant tunneling diode (RTD) in a microstructure. The fourbeam structure is analyzed and fabricated by positing RTDs at the stress sensitive regions. Stress along ...This paper reports the piezoresistive effect of a resonant tunneling diode (RTD) in a microstructure. The fourbeam structure is analyzed and fabricated by positing RTDs at the stress sensitive regions. Stress along the [110] orienta- tion and [110]ientation induces a change in the RTD's current-voltage (I-V) curves,i, e., the meso-piezoresistance variety,mainly in its negative different resistance (NDR) region. By different methods,the mechanic-electric coupling characteristic of RTD is studied and the consistent 10^9Pa^1 piezoresistive coefficients are discovered.展开更多
Beams,plates,and shells,as the fundamental mechanical structures,are widely used in microelectromechanical systems(MEMS)and nanoelectromechanical systems(NEMS)as sensors,actuators,energy harvesters,and among others.De...Beams,plates,and shells,as the fundamental mechanical structures,are widely used in microelectromechanical systems(MEMS)and nanoelectromechanical systems(NEMS)as sensors,actuators,energy harvesters,and among others.Deeply understand the electromechanical coupling of these dielectric structures is of crucial for designing,fabricating,and optimizing practice devices in these systems.Herein we demonstrate the electromechanical coupling in flexoelectric circular plate,in which higher-order strain gradients were considered to extend the classical electromechanical properties to isotropic materials,in which the non-uniform distribution of the electric potential along the radial direction was considered.Analytical solutions for the vibration modes of the flexoelectric circular plates showed that the dynamic modes were totally different from the piezoelectric circular plates owing to the inversion symmetry breaking by the strain gradient.The electromechanical coupling dynamic modes are sensitive to bending,twisting modes owing to the sensitivity of the flexoelectric effect to bending.This work provides a fundamental understanding of the electromechanical coupling in flexoelectric circular plate,which is helpful in designing novel flexoelectric circular plate-based devices,such as flexoelectric mirrors.展开更多
To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated accordi...To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects, and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.展开更多
The decomposition of Cull nanoparticles in aqueous solution has been successfully developed as a novel method for the preparation of Cu2O nanoparticles. In particular, we found that the decomposition of Cull nanoparti...The decomposition of Cull nanoparticles in aqueous solution has been successfully developed as a novel method for the preparation of Cu2O nanoparticles. In particular, we found that the decomposition of Cull nanoparticles in aqueous solution could be catalyzed by Au colloids, forming CU2O-Au nanocomposites. The composition and structure of the resulting Cu2O-Au nanocomposites have been characterized in detail by inductively coupled plasma atomic emission spectroscopy, powder X-ray diffraction, N2 adsorption-desorption isotherms, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Their visible-light-driven photocatalytic activity toward various dye molecules has also been investigated. Depending on the Au:Cu ratio, Cu20-Au nanocomposites exhibit different novel nanostructures including a beautiful flower-like nanostructure that consists of polycrystalline Cu2O, amorphous Cu2O and Au colloids. We propose that the rapidly-generated bubbles of H2 during the course of the catalytic decomposition reaction drive the simultaneously-formed Cu2O to form amorphous curved thin foils and might also act as a template to assemble curved thin foils of amorphous Cu2O, polycrystalline Cu2O and Au colloids into uniform nanostructures. A Cu2O-Au nanocomposite with a Cu:Au ratio of 40 exhibits remarkable chemisorption capacity and visible-light-driven photocatalytic activity towards methyl orange and acid orange 7 and is a promising chemisorption-photocatalysis integrated catalyst. The catalytic decomposition of the metal hydride might open up a new approach for the fabrication of other metal/metal oxide nanocomposites with novel nanostructures and properties.展开更多
The (2+1)-dimensional Maxwell-Chern-Simons gravity with phantom dilaton field coupling is studied in this paper.It is shown that black hole solution to exist when electromagnetic coupled to dilaton field in the non-tr...The (2+1)-dimensional Maxwell-Chern-Simons gravity with phantom dilaton field coupling is studied in this paper.It is shown that black hole solution to exist when electromagnetic coupled to dilaton field in the non-trivial way.Moreover,asymptotic index and distribution parameter of current density are calculated by using black hole solution,some new features of this solution are briefly discussed.展开更多
As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies l...As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.展开更多
The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control bec...The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.展开更多
文摘介绍了一种新的切实可行的能量俘获方法,即通过压电结构的力/电转换功能从环境振动中提取能量,实现微电子器件的无线供能.这种由压电结构制作的能从环境振动中提取能量的声波器件称为压电俘能器,可分为两类:一类是压电结构在环境振动激励下所输出的功率直接供给微电子器件工作,不进行能量储存,这类俘能器称为第一类压电俘能器(piezoelectric power harvester);另一类是环境振动较弱,压电结构的输出功率低于器件的瞬时耗能,考虑到某些器件大部分时间处于休眠状态,而俘能器却随时可以从环境振动中提取能量,因此经过一段时间的能量累积后,由俘能器所储存的能量仍能满足器件的短期工作耗能.显然,这类俘能器需要具备能量储存功能,称为第二类压电俘能器(piezoelectric energy harvester).本文详细介绍了压电俘能器结构以及两类俘能器的不同分析方法,阐述了提高俘能效率的有效措施并揭示了相关的改进机理,对压电俘能器的设计和应用具有重要意义.
基金funded by the National Natural Science Foundation of China(Grant No.12272217)。
文摘The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.
基金Project(51474251) supported by the National Natural Science Foundation of China
文摘A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.
基金Projects(51474251,51874351) supported by the National Natural Science Foundation of China
文摘A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.
基金Supported by National Natural Science Foundation of China under Grant No. 10875060
文摘We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.
文摘In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4^(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4^(2-), SeO_3^(2-), and AsO_4^-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L^(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R^2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R^2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g^(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.
基金Supported by State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of Chinese Academy of Sciences under Grant No.T152908Hunan Provincial Natural Science Foundation of China under Grant No.10JJ6010+1 种基金the Key Project Foundation of Hunan Provincial Education Department,China under Grant No.10A095Science Research Foundation of Jishou University of China under Grant No.10JDY034
文摘We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolutions are studied under various photon numbers of cavity field. The results show that the amplitude and period of the bipartite entanglement square concurrences can be controlled by the choice of initial states of SCQs and photon number of cavity field, respectively. This simple model of a quantum register allows us to understand the dynamic process of the quantum storage of information carried by charge qubit.
基金Project(51036001)supported by the National Natural Science Foundation of ChinaProject(2011BAJ03B05)supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China
文摘A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate for energy-storage in a night operation mode when the electric power supply is at its valley.Comparison of the performance of the new system,the solar thermal regeneration system and the solar electrodialysis regeneration system are made and the influential factors of the performance of the new system are investigated.The results reveal that the new system will be more energy efficient than the solar thermal regeneration system and the solar electrodialysis regeneration system.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)+2 种基金Natural Science Foundation of Gansu Province(No.1610RJZA042)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)Scientific Research Program of Colleges and Universities in Gansu Province(No.2016B-032)。
文摘There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter(SAPF),which has a great influence on the reasonable selection of various parameter values.By analyzing the calculation methods of the inductance of alternating current(AC)side and the voltage and capacitance values of direct current(DC)side in the existing single/three-phase SAPF main circuit,a specific single-phase SAPF circuit parameter analytical expression was obtained.Aiming at the coupling relationship among the variables in the resulting expression,the model was optimized and analyzed in MATLAB,and a complete set of parameters design scheme was obtained,which ensure the comprehensive optimization target of the post-harmonic content below 2% is compensated under a specific load.The simulation and experimental procedures verify the correctness of the selected parameters.
文摘Electmmechanical coupling system is one of the key technologies of hybrid electric vehicles. Among the existing electromechanical coupling systems, ISG system is recognized as the most practical one with the highest integration. However, the efficiency of ISG system is relatively low in pure-motor-drive mode. In this paper, a hybrid drivetrain with double clutches was proposed, in which a mode-clutch was installed between engine and motor as the mode switch, thus the efficiency in pure-motor-drive mode was improved. This paper discussed the architecture, modeling and control strategy of double-clutch drivetrain. The results of co-simulation by Cruise and Simulink showed that the fuel economy of the vehicle with this drivetrain was effectively improved compared to similar conventional vehicles.
文摘Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.
文摘The development of non‐precious metal catalysts that facilitate the oxygen evolution reaction(OER)is important for the widespread application of hydrogen production by water splitting.Various perovskite oxides have been employed as active OER catalysts,however,the underlying mechanism that occurs at the catalyst‐electrolyte interface is still not well understood,prohibiting the design and preparation of advanced OER catalysts.Here,we report a systematic investigation into the effect of proton dynamics on the catalyst‐electrolyte interfaces of four perovskite catalysts:La_(0.5)Sr_(0.5)CoO_(3‐δ)(LSCO),LaCoO_(3),LaFeO_(3),and LaNiO_(3).The pH‐dependent OER activities,H/D kinetic isotope effect,and surface functionalization with phosphate anion groups were investigated to elucidate the role of proton dynamics in the rate‐limiting steps of the OER.For oxides with small charge‐transfer energies,such as LSCO and LaNiO_(3),non‐concerted proton‐coupled electron transfer steps are involved in the OER,and the activity is strongly controlled by the proton dynamics on the catalyst surface.The results demonstrate the important role of interfacial proton transfer in the OER mechanism,and suggest that proton dynamics at the interface should carefully be considered in the design of future high‐performance catalysts.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10747135, 10675052 and 10875050
文摘We investigate the in-medium interparticle potential of hot gauge system with bound states by employing the QED and scalar QED coupling. At the finite temperature an oscillatory behavior of the potential has been found as well as its variation in terms of different free parameters. We expect the competition among the parameters will lead to an appropriate interparticle potential, which could be extended to discuss the fluid properties of QGP with scalar bound states.
文摘This paper reports the piezoresistive effect of a resonant tunneling diode (RTD) in a microstructure. The fourbeam structure is analyzed and fabricated by positing RTDs at the stress sensitive regions. Stress along the [110] orienta- tion and [110]ientation induces a change in the RTD's current-voltage (I-V) curves,i, e., the meso-piezoresistance variety,mainly in its negative different resistance (NDR) region. By different methods,the mechanic-electric coupling characteristic of RTD is studied and the consistent 10^9Pa^1 piezoresistive coefficients are discovered.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122209,12072251,and 12102153)the Project B18040.
文摘Beams,plates,and shells,as the fundamental mechanical structures,are widely used in microelectromechanical systems(MEMS)and nanoelectromechanical systems(NEMS)as sensors,actuators,energy harvesters,and among others.Deeply understand the electromechanical coupling of these dielectric structures is of crucial for designing,fabricating,and optimizing practice devices in these systems.Herein we demonstrate the electromechanical coupling in flexoelectric circular plate,in which higher-order strain gradients were considered to extend the classical electromechanical properties to isotropic materials,in which the non-uniform distribution of the electric potential along the radial direction was considered.Analytical solutions for the vibration modes of the flexoelectric circular plates showed that the dynamic modes were totally different from the piezoelectric circular plates owing to the inversion symmetry breaking by the strain gradient.The electromechanical coupling dynamic modes are sensitive to bending,twisting modes owing to the sensitivity of the flexoelectric effect to bending.This work provides a fundamental understanding of the electromechanical coupling in flexoelectric circular plate,which is helpful in designing novel flexoelectric circular plate-based devices,such as flexoelectric mirrors.
基金supported by the National Natural Science Foundation of China (No. 50708015)the Program for New Century Excellent Talents in University (No. NCET-06-0270), China
文摘To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects, and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.
基金This work was financially supported by the National Natural Science Foundation of China (grant No. 20773113), the Solar Energy Project of the Chinese Academy of Sciences, the National Basic Research Program of China (No. 2010CB923302), MOE program for PCSIRT (IRT0756), the Fundamental Research Funds for the Central Universities (No. WK2060030005), and the MPG-CAS partner group program.
文摘The decomposition of Cull nanoparticles in aqueous solution has been successfully developed as a novel method for the preparation of Cu2O nanoparticles. In particular, we found that the decomposition of Cull nanoparticles in aqueous solution could be catalyzed by Au colloids, forming CU2O-Au nanocomposites. The composition and structure of the resulting Cu2O-Au nanocomposites have been characterized in detail by inductively coupled plasma atomic emission spectroscopy, powder X-ray diffraction, N2 adsorption-desorption isotherms, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Their visible-light-driven photocatalytic activity toward various dye molecules has also been investigated. Depending on the Au:Cu ratio, Cu20-Au nanocomposites exhibit different novel nanostructures including a beautiful flower-like nanostructure that consists of polycrystalline Cu2O, amorphous Cu2O and Au colloids. We propose that the rapidly-generated bubbles of H2 during the course of the catalytic decomposition reaction drive the simultaneously-formed Cu2O to form amorphous curved thin foils and might also act as a template to assemble curved thin foils of amorphous Cu2O, polycrystalline Cu2O and Au colloids into uniform nanostructures. A Cu2O-Au nanocomposite with a Cu:Au ratio of 40 exhibits remarkable chemisorption capacity and visible-light-driven photocatalytic activity towards methyl orange and acid orange 7 and is a promising chemisorption-photocatalysis integrated catalyst. The catalytic decomposition of the metal hydride might open up a new approach for the fabrication of other metal/metal oxide nanocomposites with novel nanostructures and properties.
基金Supported by Natural Science Foundation of Sichuan Education Committee under Grant No. 11ZA100Scientific Research Foundation for Graduate Student of Sichuan Normal University under Grant No. 20113
文摘The (2+1)-dimensional Maxwell-Chern-Simons gravity with phantom dilaton field coupling is studied in this paper.It is shown that black hole solution to exist when electromagnetic coupled to dilaton field in the non-trivial way.Moreover,asymptotic index and distribution parameter of current density are calculated by using black hole solution,some new features of this solution are briefly discussed.
基金supported by the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2012AA050210)the National Natural Science Foundation of China (Grant No. 51177011)+1 种基金the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ11_0150)Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.
基金supported by the National Natural Science Foundation of China(Grant No.51275557)the National Science-technology Support Plan Projects of China(Grant No.2013BAG14B01)
文摘The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.