This paper describes the dynamic characteristics of pipelines laid through alluvial valleys. We assume that the alluvial valley has a semi-cylindrical cross-section. The ground motion of alluvial valley under harmonic...This paper describes the dynamic characteristics of pipelines laid through alluvial valleys. We assume that the alluvial valley has a semi-cylindrical cross-section. The ground motion of alluvial valley under harmonic seismic SH waves is carried out, and the pipeline-soil dynamic interaction is taken into account. Though simple, the model may qualitatively explain the earthquake damages of pipelines laid through an alluvial river valley.展开更多
In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results ...In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results show that the DFLEM is a new effective method to analyse dynamic soil--structure interaction and can be applied widely in practice.展开更多
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ...The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.展开更多
文摘This paper describes the dynamic characteristics of pipelines laid through alluvial valleys. We assume that the alluvial valley has a semi-cylindrical cross-section. The ground motion of alluvial valley under harmonic seismic SH waves is carried out, and the pipeline-soil dynamic interaction is taken into account. Though simple, the model may qualitatively explain the earthquake damages of pipelines laid through an alluvial river valley.
文摘In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results show that the DFLEM is a new effective method to analyse dynamic soil--structure interaction and can be applied widely in practice.
文摘The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.