Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution te...Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.展开更多
Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, ...Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, average reservoir pressure can be conducted only when producing wells are shut in. This is regarded as a pressure build-up test. During the test, the wellbore pressure is recorded as a function of time. Currently, the only available method with which to obtain average reservoir pressure is to conduct an extended build-up test. It must then be evaluated using Homer or MDH (Miller, Dyes and Huchinson) valuation procedures. During production, average reservoir pressure declines due to fluid withdrawal from the wells and therefore, the average reservoirpressure is updated, periodically. A significant economic loss occurs during the entire pressure build-up test when producing wells are shut in. In this study, a neural network model has been established to map a nonlinear time-varying relationship which controls reservoir production history in order to predict and interpolate average reservoir pressure without closing the producing wells. This technique is suitable for constant and variable flow rates.展开更多
Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power ...Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.展开更多
China's newly enacted Breakwater Design Specifications(JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design princi...China's newly enacted Breakwater Design Specifications(JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design principles, methods and construction requirements are different from those of common shallow water breakwaters. However, the specifications do not make any mention of how to choose wave force calculation methods of deep-water breakwaters. To study the feasibility of different formulae for wave force estimation of deep water combined breakwaters, the wave force calculated by the Sainflou's, Goda's, modified Goda's and specifications' methods are compared for various water depths and wave heights in this paper. The calculated results are also compared with experimental data. The total horizontal forcing and the pattern of pressure distributions are presented. Comparisons show that the wave pressure distributions by the four methods are similar, but the total horizontal forces are different. The results obtained by the Goda's method and the specified formulae are much closer to the experimental data. As for the wave force estimation for the deepwater mixed embankment foundation bed parapet, the Goda's formula is applied in the case with a water depth of less than 42 m. The Specifications method is suitable for standing waves. In the wave force estimates of breastworks, Sainflou's and the modified Gaoda's formulae are no longer applicable for the foundation bed of mixed embankment.展开更多
基金Supported by the National Natural Science Foundation of China (60804027, 61064003) and Fuzhou University Research Foundation (FZU-02335, 600338 and 600567).
文摘Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.
文摘Insight into average oil pressure in gas reservoirs and changes in production (time), play a critical role in reservoir and production performance, economic evaluation and reservoir management. In all practicality, average reservoir pressure can be conducted only when producing wells are shut in. This is regarded as a pressure build-up test. During the test, the wellbore pressure is recorded as a function of time. Currently, the only available method with which to obtain average reservoir pressure is to conduct an extended build-up test. It must then be evaluated using Homer or MDH (Miller, Dyes and Huchinson) valuation procedures. During production, average reservoir pressure declines due to fluid withdrawal from the wells and therefore, the average reservoirpressure is updated, periodically. A significant economic loss occurs during the entire pressure build-up test when producing wells are shut in. In this study, a neural network model has been established to map a nonlinear time-varying relationship which controls reservoir production history in order to predict and interpolate average reservoir pressure without closing the producing wells. This technique is suitable for constant and variable flow rates.
文摘Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.
基金supported by the Shandong Sci-tech Development Plan(Item No.2008GGB01099)
文摘China's newly enacted Breakwater Design Specifications(JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design principles, methods and construction requirements are different from those of common shallow water breakwaters. However, the specifications do not make any mention of how to choose wave force calculation methods of deep-water breakwaters. To study the feasibility of different formulae for wave force estimation of deep water combined breakwaters, the wave force calculated by the Sainflou's, Goda's, modified Goda's and specifications' methods are compared for various water depths and wave heights in this paper. The calculated results are also compared with experimental data. The total horizontal forcing and the pattern of pressure distributions are presented. Comparisons show that the wave pressure distributions by the four methods are similar, but the total horizontal forces are different. The results obtained by the Goda's method and the specified formulae are much closer to the experimental data. As for the wave force estimation for the deepwater mixed embankment foundation bed parapet, the Goda's formula is applied in the case with a water depth of less than 42 m. The Specifications method is suitable for standing waves. In the wave force estimates of breastworks, Sainflou's and the modified Gaoda's formulae are no longer applicable for the foundation bed of mixed embankment.