Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics...Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.展开更多
UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared sam...UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared samples were characterized using XRD, SEM, FTIR and UV-vis DRS. The experimental results show that doping Fe3+ induced the formation of some new species in diopside, and promoted light adsorption property of diopside in UV-visible region. Photochemical reactivity of Fe-doped diopside obviously depended on the content of doping Fe3+. The diopside with 1.848% Fe3+ exhibited the superior photocatalytic activity with 95% degradation of MB under UV-visible light for 3 h. The photocatalytic degradation kinetics of MB over all samples showed the first-order reaction nature.展开更多
The kinetics of isothermal reduction of Ag2O with graphite under argon atmosphere for a non-activated sample and mechanically activated sample was investigated.It is found that Johnson-Mehl-Avrami model appropriately ...The kinetics of isothermal reduction of Ag2O with graphite under argon atmosphere for a non-activated sample and mechanically activated sample was investigated.It is found that Johnson-Mehl-Avrami model appropriately explained the thermal and mechanochemical synthesis of Ag from Ag2O+ghraphite mixture.The process kinetics was investigated using the same approach for milled and unmilled samples.The results show that the Avrami exponent of mechanochemical reduction is higher than that of high temperature thermal reduction.Also,the mechanisms of nuclei growth in thermal and mechanochemical reduction are diffusion controlled and interface controlled,respectively.展开更多
For further comprehending the mechanism of the intensification of ultrasound for extraction,the difference of leaching kinetics between the ultrasound-assisted and conventional sodium carbonate leaching of scheelite w...For further comprehending the mechanism of the intensification of ultrasound for extraction,the difference of leaching kinetics between the ultrasound-assisted and conventional sodium carbonate leaching of scheelite was studied,and the corresponding kinetic equations were established.The results indicate that the obtained apparent activation energy with or without ultrasound is same 72 kJ/mol,and both reactions are controlled by surface chemical reaction.By comparing the leaching kinetics of scheelite by Na2CO3,NaOH and Na3PO4 reactants with or without ultrasound,a general conclusion for scheelite hydrometallurgy is obtained.For the process with the formation of compact product layer,the intensification of the tungsten extraction with ultrasound mainly reflects in the stripping and elimination of product layer,corresponding to the transformation of kinetic controlling step from diffusion controlling step and reduction of apparent activation energy.For the one without compact product layer or with a loose and porous product layer,the intensification mainly embodies in the increase of frequency factor,and the controlling step and apparent activation energy of the reaction always remain constant.展开更多
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-depend...The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.展开更多
Dried ground leaves of Psidium guajava L. (guava) were extracted by water and aqueous ethyl alcohol 50% (1:10) ratio, and the total phenolic content in the extracts was determined spectrophotometrically according to ...Dried ground leaves of Psidium guajava L. (guava) were extracted by water and aqueous ethyl alcohol 50% (1:10) ratio, and the total phenolic content in the extracts was determined spectrophotometrically according to Folin- Ciocalteu’s phenol method and calculated as gallic acid equivalent (GAE). Remarkably high total phenolic content 575.3 ±15.5 and 511.6±6.2 mg of GAE/g of dried weight material (for ethanol guava leaf extracts and water guava leaf extracts, respectively) were obtained. The antioxidant activity of lyophilized extracts was determined at ambient temperature by means of a 2,2-diphenyl-1-picrylhydryzyl (DPPH˙) colorimetry with detection scheme at 515 nm. The activity was evalu- ated by the decrease in absorbance as the result of DPPH˙ color change from purple to yellow. The higher the sample concentration used, the stronger was the free radical-scavenging effect. The results obtained showed that ascorbic acid was a substantially more powerful antioxidant than the extracts from guava leaf. On the other hand, the commercial guava leaf extracts and ethanol guava leaf extracts showed almost the same antioxidant power whereas water guava leaf extracts showed lower antioxidant activity. The parameter EC50 and the time needed to reach the steady state to EC50 concentration ( TEC50 ) affected the antiradical capacity of the sample. The antioxidant efficiency (AE) has been shown to be a more ade- quate parameter for selecting antioxidants than the widely used EC50. This study revealed that guava leaf extracts comprise effective potential source of natural antioxidants.展开更多
Experiments on thermal decomposition of nano-sized calcium carbonate were carried out in a thermo-gravimetric analyzer under non-isothermal condition of different heating rates (5 to 20K·min-1). The Coats and Red...Experiments on thermal decomposition of nano-sized calcium carbonate were carried out in a thermo-gravimetric analyzer under non-isothermal condition of different heating rates (5 to 20K·min-1). The Coats and Redfern's equation was used to determine the apparent activation energy and the pre-exponential factors. The mechanism of thermal decomposition was evaluated using the master plots, Coats and Redfern's equation and the kinetic compensation law. It was found that the thermal decomposition property of nano-sized calcium carbonate was different from that of bulk calcite. Nano-sized calcium carbonate began to decompose at 640℃, which was 180℃lower than the reported value for calcite. The experimental results of kinetics were compatible with the mechanism of one-dimensional phase boundary movement. The apparent activation energy of nano-sized calcium carbonate was estimated to be 151kJ·mol-1 while the literature value for normal calcite was approximately 200kJ·mol-1. The order of magnitude of pre-exponential factors was estimated to be 10~9 s-1.展开更多
Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the...Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther- modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemically activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemically activated CTNSC is spon- taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models, A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride somtion.展开更多
Ethoxylation and propoxylation reactions are performed in the industry to produce mainly non-ionic surfactants and ethylene oxide(EO)–propylene oxide(PO) copolymers.Both the reactions occur in gas–liquid reactors by...Ethoxylation and propoxylation reactions are performed in the industry to produce mainly non-ionic surfactants and ethylene oxide(EO)–propylene oxide(PO) copolymers.Both the reactions occur in gas–liquid reactors by feeding gaseous EO,PO or both into the reactor containing a solution of an alkaline catalyst(KOH or Na OH).Non-ionic surfactants are produced by using liquid starters like fatty alcohols,fatty acids or alkyl-phenols,while when the scope is to prepare EO–PO copolymers the starter can be a mono-or multi-functional alcohol of low molecular weight.Both reactions are strongly exothermic,and EO and PO,in some conditions,can give place to runaway and also to explosive side reactions.Therefore,the choice of a suitable reactor is a key factor for operating in safe conditions.A correct reactor design requires:(i) the knowledge of the kinetic laws governing the rates of the occurring reactions;(ii) the role of mass and heat transfer in affecting the reaction rate;(iii) the solubility of EO and PO in the reacting mixture with the non-ideality of the reacting solutions considered;(iv) the density of the reacting mixture.All these aspects have been studied by our research group for different starters of industrial interest,and the data collected by using semibatch well stirred laboratory reactors have been employed for the simulation of industrial reactors,in particular Gas–Liquid Spray Tower Loop Reactors.展开更多
Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared ...Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment(1989)fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically.展开更多
The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl...The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl radical formation in the controlled decomposition of the oxidant agent, and the concentration and toxicity of hydrogen peroxide. The objective of this study was to develop a mathematical model able to predict the kinetics of the inactivation Escherichia coli and total coliforms cells present in treated domestic sewage through catalytic peroxidation. The catalyst used was iron oxide supported on mineral coal (called CP), and the effects of the operational conditions, including hydrogen peroxide concentration and dosage of catalyst, were evaluated. The results showed that the disinfection kinetics of the treated domestic sewage is dependent on the concentrations of hydrogen peroxide and catalyst dosage. The kinetic model was shown to be able to predict the behavior of the inactivation kinetics of the bacterium Escherichia coli ATCC-25922 when different concentrations of hydrogen peroxide (75 and 100 mg·L^-1) were used, regardless of the catalyst dosage.展开更多
In this work, the thermodynamic parameters for the adsorption of water vapor on untreated silica gel and silica gel treated with hygroscopic salts and silane coupling agent were determined by lnverse Gas Chromatograp...In this work, the thermodynamic parameters for the adsorption of water vapor on untreated silica gel and silica gel treated with hygroscopic salts and silane coupling agent were determined by lnverse Gas Chromatography (IGC) in the infinite dilution region. The desorption activation energies of the water vapor on virgin and modified silica gels were estimated by using the Temperature Programmed Desorption (TPD) technique. The interactions between the water and the virgin and modified silica gels were discussed. Results showed that the thermodynamic parameters and desorption activation energy of water vapour on the silica gels increase with decreasing pore size and increasing the surface hydrophilic properties. The desorption activation energy of virgin and modified silica gels was found to increase with increasing the thermodynamic parameters. The larger the adsorption parameters and the desorption activation energy were, the interactions between water and virgin and modified silica gels were.展开更多
基金Project(51474075)supported by the National Natural Science Foundation of China
文摘Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.
基金Projects (50874029, 51090384) supported by the National Natural Science Foundation of China
文摘UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared samples were characterized using XRD, SEM, FTIR and UV-vis DRS. The experimental results show that doping Fe3+ induced the formation of some new species in diopside, and promoted light adsorption property of diopside in UV-visible region. Photochemical reactivity of Fe-doped diopside obviously depended on the content of doping Fe3+. The diopside with 1.848% Fe3+ exhibited the superior photocatalytic activity with 95% degradation of MB under UV-visible light for 3 h. The photocatalytic degradation kinetics of MB over all samples showed the first-order reaction nature.
文摘The kinetics of isothermal reduction of Ag2O with graphite under argon atmosphere for a non-activated sample and mechanically activated sample was investigated.It is found that Johnson-Mehl-Avrami model appropriately explained the thermal and mechanochemical synthesis of Ag from Ag2O+ghraphite mixture.The process kinetics was investigated using the same approach for milled and unmilled samples.The results show that the Avrami exponent of mechanochemical reduction is higher than that of high temperature thermal reduction.Also,the mechanisms of nuclei growth in thermal and mechanochemical reduction are diffusion controlled and interface controlled,respectively.
基金Project(51604160)supported by the National Natural Science Foundation of ChinaProject(2016zzts037)supported by the Fundamental Research Funds for the Central Universities of China
文摘For further comprehending the mechanism of the intensification of ultrasound for extraction,the difference of leaching kinetics between the ultrasound-assisted and conventional sodium carbonate leaching of scheelite was studied,and the corresponding kinetic equations were established.The results indicate that the obtained apparent activation energy with or without ultrasound is same 72 kJ/mol,and both reactions are controlled by surface chemical reaction.By comparing the leaching kinetics of scheelite by Na2CO3,NaOH and Na3PO4 reactants with or without ultrasound,a general conclusion for scheelite hydrometallurgy is obtained.For the process with the formation of compact product layer,the intensification of the tungsten extraction with ultrasound mainly reflects in the stripping and elimination of product layer,corresponding to the transformation of kinetic controlling step from diffusion controlling step and reduction of apparent activation energy.For the one without compact product layer or with a loose and porous product layer,the intensification mainly embodies in the increase of frequency factor,and the controlling step and apparent activation energy of the reaction always remain constant.
文摘The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.
文摘Dried ground leaves of Psidium guajava L. (guava) were extracted by water and aqueous ethyl alcohol 50% (1:10) ratio, and the total phenolic content in the extracts was determined spectrophotometrically according to Folin- Ciocalteu’s phenol method and calculated as gallic acid equivalent (GAE). Remarkably high total phenolic content 575.3 ±15.5 and 511.6±6.2 mg of GAE/g of dried weight material (for ethanol guava leaf extracts and water guava leaf extracts, respectively) were obtained. The antioxidant activity of lyophilized extracts was determined at ambient temperature by means of a 2,2-diphenyl-1-picrylhydryzyl (DPPH˙) colorimetry with detection scheme at 515 nm. The activity was evalu- ated by the decrease in absorbance as the result of DPPH˙ color change from purple to yellow. The higher the sample concentration used, the stronger was the free radical-scavenging effect. The results obtained showed that ascorbic acid was a substantially more powerful antioxidant than the extracts from guava leaf. On the other hand, the commercial guava leaf extracts and ethanol guava leaf extracts showed almost the same antioxidant power whereas water guava leaf extracts showed lower antioxidant activity. The parameter EC50 and the time needed to reach the steady state to EC50 concentration ( TEC50 ) affected the antiradical capacity of the sample. The antioxidant efficiency (AE) has been shown to be a more ade- quate parameter for selecting antioxidants than the widely used EC50. This study revealed that guava leaf extracts comprise effective potential source of natural antioxidants.
基金Supported by the Key Research of Science & Technology of Education(No.0202)and the Fundamental Research Plan of HuoYingdong(No.81063).
文摘Experiments on thermal decomposition of nano-sized calcium carbonate were carried out in a thermo-gravimetric analyzer under non-isothermal condition of different heating rates (5 to 20K·min-1). The Coats and Redfern's equation was used to determine the apparent activation energy and the pre-exponential factors. The mechanism of thermal decomposition was evaluated using the master plots, Coats and Redfern's equation and the kinetic compensation law. It was found that the thermal decomposition property of nano-sized calcium carbonate was different from that of bulk calcite. Nano-sized calcium carbonate began to decompose at 640℃, which was 180℃lower than the reported value for calcite. The experimental results of kinetics were compatible with the mechanism of one-dimensional phase boundary movement. The apparent activation energy of nano-sized calcium carbonate was estimated to be 151kJ·mol-1 while the literature value for normal calcite was approximately 200kJ·mol-1. The order of magnitude of pre-exponential factors was estimated to be 10~9 s-1.
基金Supported by the University Grants Commission(UGC),Government of India,New Delhi under the Major Research Project(32-296/2006 SR)
文摘Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther- modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemically activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemically activated CTNSC is spon- taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models, A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride somtion.
文摘Ethoxylation and propoxylation reactions are performed in the industry to produce mainly non-ionic surfactants and ethylene oxide(EO)–propylene oxide(PO) copolymers.Both the reactions occur in gas–liquid reactors by feeding gaseous EO,PO or both into the reactor containing a solution of an alkaline catalyst(KOH or Na OH).Non-ionic surfactants are produced by using liquid starters like fatty alcohols,fatty acids or alkyl-phenols,while when the scope is to prepare EO–PO copolymers the starter can be a mono-or multi-functional alcohol of low molecular weight.Both reactions are strongly exothermic,and EO and PO,in some conditions,can give place to runaway and also to explosive side reactions.Therefore,the choice of a suitable reactor is a key factor for operating in safe conditions.A correct reactor design requires:(i) the knowledge of the kinetic laws governing the rates of the occurring reactions;(ii) the role of mass and heat transfer in affecting the reaction rate;(iii) the solubility of EO and PO in the reacting mixture with the non-ideality of the reacting solutions considered;(iv) the density of the reacting mixture.All these aspects have been studied by our research group for different starters of industrial interest,and the data collected by using semibatch well stirred laboratory reactors have been employed for the simulation of industrial reactors,in particular Gas–Liquid Spray Tower Loop Reactors.
基金Supported by the National Natural Science Foundation of China(21276076)the Program for New Century Excellent Talents in University(NCET-13-0801)the Fundamental Research Funds for the Central Universities(222201313011)
文摘Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment(1989)fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically.
文摘The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl radical formation in the controlled decomposition of the oxidant agent, and the concentration and toxicity of hydrogen peroxide. The objective of this study was to develop a mathematical model able to predict the kinetics of the inactivation Escherichia coli and total coliforms cells present in treated domestic sewage through catalytic peroxidation. The catalyst used was iron oxide supported on mineral coal (called CP), and the effects of the operational conditions, including hydrogen peroxide concentration and dosage of catalyst, were evaluated. The results showed that the disinfection kinetics of the treated domestic sewage is dependent on the concentrations of hydrogen peroxide and catalyst dosage. The kinetic model was shown to be able to predict the behavior of the inactivation kinetics of the bacterium Escherichia coli ATCC-25922 when different concentrations of hydrogen peroxide (75 and 100 mg·L^-1) were used, regardless of the catalyst dosage.
文摘In this work, the thermodynamic parameters for the adsorption of water vapor on untreated silica gel and silica gel treated with hygroscopic salts and silane coupling agent were determined by lnverse Gas Chromatography (IGC) in the infinite dilution region. The desorption activation energies of the water vapor on virgin and modified silica gels were estimated by using the Temperature Programmed Desorption (TPD) technique. The interactions between the water and the virgin and modified silica gels were discussed. Results showed that the thermodynamic parameters and desorption activation energy of water vapour on the silica gels increase with decreasing pore size and increasing the surface hydrophilic properties. The desorption activation energy of virgin and modified silica gels was found to increase with increasing the thermodynamic parameters. The larger the adsorption parameters and the desorption activation energy were, the interactions between water and virgin and modified silica gels were.