Surveys on antibiotics have become one of the most popular topics in the recent two decades. From 1998 to 2018, more than 5,000 articles concentrated on the research of antibiotic wastewater treatment have been publis...Surveys on antibiotics have become one of the most popular topics in the recent two decades. From 1998 to 2018, more than 5,000 articles concentrated on the research of antibiotic wastewater treatment have been published. Among them, photocatalysis has received much attention due to its green and environmental-friendly properties. In this mini-review, the recent progress of photocatalysis in antibiotic wastewater was summarized, including antibiotics degradation and hydrogen energy conversion. The photocatalysts commonly used were also discussed. It can be mainly classified as TiO2-based materials, sulfides and polymeric carbon nitride-based materials and bismuth-contained materials. Four major types of antibiotics, tetracycline, sulfonamide, β-lactam and quinolone, were involved. Furthermore, perspectives concentrated on future development and challenges, especially converting antibiotics into hydrogen energy, were also proposed.展开更多
The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylf...The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). The decomposition kinetics of 5-HMF and stability of LA in HTLW were further investigated. A kinetic model for glucose decomposition was proposed accordingly. In the model, a series of first-order reactions with the consideration of parallel by-reactions were used to illustrate the decomposition of glucose. The decomposition activation energies of glucose, 5-HMF, and LA were evaluated as 118.85, 95.40, and 31.29 kJ·mol^-1, respectively.展开更多
The kinetics of photodegradation of methylene blue over UV light illuminated titania particles in aqueous suspensions has been studied with different initial methylene blue concentrations and TiO2 particle sizes. The ...The kinetics of photodegradation of methylene blue over UV light illuminated titania particles in aqueous suspensions has been studied with different initial methylene blue concentrations and TiO2 particle sizes. The degradation rate increases with the decrease of initial concentration and particle size. A quasi-experienced model for photodegradation rate is derived based mainly on the coinstantaneous effects of different initial concentrations and particle sizes. The mathematical relationships of model parameters with initial concentration and particle size are given. The model results of the photodegradation rate of methylene blue are coincident with the experimental data.展开更多
This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with i...This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.展开更多
Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-p...Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.展开更多
The photocatalytic degradation of methyl orange (MO) in UV/Supported-TiO2 system was investigated and a kinetic model was presented. The experimental results show that the photocatalytic degradation rate is favored ...The photocatalytic degradation of methyl orange (MO) in UV/Supported-TiO2 system was investigated and a kinetic model was presented. The experimental results show that the photocatalytic degradation rate is favored by high concentration of dye in solution and is enhanced by the solution temperature. A simple kinetic model has been proposed which can describe the discoloration process in an adequate way. The calculated results obtained were in good agreement with experimental data. The model predicts the concentration of MO during the photocatalytic degradation process.展开更多
文摘Surveys on antibiotics have become one of the most popular topics in the recent two decades. From 1998 to 2018, more than 5,000 articles concentrated on the research of antibiotic wastewater treatment have been published. Among them, photocatalysis has received much attention due to its green and environmental-friendly properties. In this mini-review, the recent progress of photocatalysis in antibiotic wastewater was summarized, including antibiotics degradation and hydrogen energy conversion. The photocatalysts commonly used were also discussed. It can be mainly classified as TiO2-based materials, sulfides and polymeric carbon nitride-based materials and bismuth-contained materials. Four major types of antibiotics, tetracycline, sulfonamide, β-lactam and quinolone, were involved. Furthermore, perspectives concentrated on future development and challenges, especially converting antibiotics into hydrogen energy, were also proposed.
基金Supported by the National Natural Science Foundation of China (20674068) and the Natural Science Foundation of Zhejiang Province (Y405157).
文摘The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). The decomposition kinetics of 5-HMF and stability of LA in HTLW were further investigated. A kinetic model for glucose decomposition was proposed accordingly. In the model, a series of first-order reactions with the consideration of parallel by-reactions were used to illustrate the decomposition of glucose. The decomposition activation energies of glucose, 5-HMF, and LA were evaluated as 118.85, 95.40, and 31.29 kJ·mol^-1, respectively.
基金Supported by the Science and Technology Committee of Jiangsu Province.
文摘The kinetics of photodegradation of methylene blue over UV light illuminated titania particles in aqueous suspensions has been studied with different initial methylene blue concentrations and TiO2 particle sizes. The degradation rate increases with the decrease of initial concentration and particle size. A quasi-experienced model for photodegradation rate is derived based mainly on the coinstantaneous effects of different initial concentrations and particle sizes. The mathematical relationships of model parameters with initial concentration and particle size are given. The model results of the photodegradation rate of methylene blue are coincident with the experimental data.
基金Supported by the Natural Science Foundation of Guangdong Province,China(8151064101000049)
文摘This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.
基金Supported by the Doctoral Foundation of Northeast Dianli University (BSJXM-200814)Foundations of Bureau of Jilin Province (2008424)
文摘Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.
文摘The photocatalytic degradation of methyl orange (MO) in UV/Supported-TiO2 system was investigated and a kinetic model was presented. The experimental results show that the photocatalytic degradation rate is favored by high concentration of dye in solution and is enhanced by the solution temperature. A simple kinetic model has been proposed which can describe the discoloration process in an adequate way. The calculated results obtained were in good agreement with experimental data. The model predicts the concentration of MO during the photocatalytic degradation process.