In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large...In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large size, complex structure and poor low pressure atomization effect in comparison with requirement of snake-like fire rescue robots. On the basis of comprehensive typical spray noz- zles, a direct spiral double helix converging nozzle (DSDHCN) is proposed, which has the advanta- ges of small volume, light weight, simple structure, and convenient installation. To make the spray nozzle have good performance, and meet the requirements of more efficient fire extinguishing, a nu- merical study is carried out to analyze the internal and external full flow field of nozzle. A gas-liquid two-phase flow is applied to simulate the external full flow field of nozzle with VOF model in fluent software. The simulation results show the real situation of water flow out of the atomization nozzle and the water jet trajectory. Some simulations about middle or low water pressure direct spiral double he- lix converging optimized nozzle have been done in 30bar pressure. The simulation results show that the optimized nozzle structure not only makes the spray droplets have a good cone angle, but also have a sufficient axial velocity,which proves the structure rationality of the proposed optimized nozzle.展开更多
The "migrant worker shortage" which occurred several)pears ago and the recent "labor shortage" were both caused by an imbalance between the supply and demand of migrant workers. It is a periodical outcome of spon...The "migrant worker shortage" which occurred several)pears ago and the recent "labor shortage" were both caused by an imbalance between the supply and demand of migrant workers. It is a periodical outcome of spontaneous adjustment by the migrant labor market. As rural welfare was greatly enhanced in 2009, migrant workers' opportunity cost of working outside their hometowns was raised. The connotation of migrant workers' "market price" is changing. The new generation of migrant workers, namely, those born after 1980, are becoming the mainstay of enterprises' employment. Being better educated, they have different lifestyles than previous generations. "Leisure and entertainment" have become part of their opportunity cost and reduced their labor supply. "Labor shortage" is an endogenous force that helps transform China's growth patter, upgrade the industrial structure and promote urbanization. The seasonal "return of migrant workers" and the "labor shortage" which appears around China's Spring Festival each year have grown into a unique b,t effective collective bargaining mechanism that helps increase migrant workers' wages. Facing labor shortages, governments should regulate the labor market pricing and orientate labor-intensive enterprises towards transition, continue to enhance the social security system for migrant workers and those in rural areas, and make an accurate forecast of the population trend and adjust population policies.展开更多
With the increasing number of wind farms in power systems, the scheduling of a single wind farm needs to be improved. For this end, this paper proposes an optimal short-term load dispatch strategy for a single wind fa...With the increasing number of wind farms in power systems, the scheduling of a single wind farm needs to be improved. For this end, this paper proposes an optimal short-term load dispatch strategy for a single wind farm. Firstly, considering the large number of wind units and the high dimensionality of the scheduling solutions, we analyze the unit load characteristics, from which we extract the unit load characteristic matrix, and then classify the wind power units with the FCM fuzzy clustering algorithm. Secondly, we define the running loss indicator and action loss indicator. Based on the prediction of wind power and the load instructions, we establish a unit commitment model in wind farm, and solve the model using a combination of the fuzzy clustering algorithm and genetic algorithm, which overcomes the difficulty of the high dimensionality of the solution in the wind farm scheduling problem, to obtain the optimal scheduling strategy. Finally, through the simulation of the scheduling strategy for a 45 MW wind farm, we demonstrate the feasibility and effectiveness of the proposed strategy.展开更多
Magnetophoresis is one of the most important separation methods in biological and chemical engineering. In this paper,a novel impact parameter on separation efficiency,i.e.,the angle between the vectors of magnetic fo...Magnetophoresis is one of the most important separation methods in biological and chemical engineering. In this paper,a novel impact parameter on separation efficiency,i.e.,the angle between the vectors of magnetic force and fluid velocity,was derived from the basic equation describing the motion of magnetic beads in microchannels. It is proposed that one of the most important approaches for separation efficiency enhancement is to improve the coordination of magnetic force field and fluid flow field. A T-shaped microchannel magnetophoretic separator was designed based on the angle. And then a two-dimensional dynamic model of magnetic beads moving in microchannels was established to study the separation efficiency of T-shaped microseparator by combined use of finite element method and Runge-Kutta method. The results show that the capture effi-ciency of T-shaped microseparator is much higher than that of the straight microseparator at the same conditions. For small magnetic beads at high fluid velocities,the designed T-shaped microseparator could still keep high separation efficiency whereas the conventional straight microseparator fails to separate the magnetic beads. Further analysis shows that the mechanism of separation efficiency enhancement lies in the synergy of magnetic force field and flow field,which directly leads to large deflected velocity of the magnetic beads from the main stream,and thus increasing the separation efficiency. It is anticipated that the results in this paper are theoretically helpful for the optimum design of highly efficient magnetophoretic separators.展开更多
In this work,we developed the CHARMM all-atom force field parameters for the nonstandard biological residue chalcone,followed by the standard protocol for the CHARMM27 force field development.Target data were generate...In this work,we developed the CHARMM all-atom force field parameters for the nonstandard biological residue chalcone,followed by the standard protocol for the CHARMM27 force field development.Target data were generated via ab initio calculations at the MP2/6-31G* and HF/6-31G* levels.The reference data included interaction energies between water and the model compound F(a fragment of chalcone).Bond,angle,and torsion parameters were derived from the ab initio calculations and renormalized to maintain compatibility with the existing CHARMM27 parameters of standard residues.The optimized CHARMM parameters perform well in reproducing the target data.We expect that the extension of the CHARMM27 force field parameters for chalcone will facilitate the molecular simulation studies of the reaction mechanism of intramolecular cyclization of chalcone catalyzed by chalcone isomerase.展开更多
基金Supported by the National Natural Science Foundation of China(No.61105086)Self-Planned Task(SKLRS-2010-MS-12)of State Key Laboratory of Robotics and System(HIT)Hubei Province Natural Science Foundation(No.2010CDB03405)
文摘In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large size, complex structure and poor low pressure atomization effect in comparison with requirement of snake-like fire rescue robots. On the basis of comprehensive typical spray noz- zles, a direct spiral double helix converging nozzle (DSDHCN) is proposed, which has the advanta- ges of small volume, light weight, simple structure, and convenient installation. To make the spray nozzle have good performance, and meet the requirements of more efficient fire extinguishing, a nu- merical study is carried out to analyze the internal and external full flow field of nozzle. A gas-liquid two-phase flow is applied to simulate the external full flow field of nozzle with VOF model in fluent software. The simulation results show the real situation of water flow out of the atomization nozzle and the water jet trajectory. Some simulations about middle or low water pressure direct spiral double he- lix converging optimized nozzle have been done in 30bar pressure. The simulation results show that the optimized nozzle structure not only makes the spray droplets have a good cone angle, but also have a sufficient axial velocity,which proves the structure rationality of the proposed optimized nozzle.
文摘The "migrant worker shortage" which occurred several)pears ago and the recent "labor shortage" were both caused by an imbalance between the supply and demand of migrant workers. It is a periodical outcome of spontaneous adjustment by the migrant labor market. As rural welfare was greatly enhanced in 2009, migrant workers' opportunity cost of working outside their hometowns was raised. The connotation of migrant workers' "market price" is changing. The new generation of migrant workers, namely, those born after 1980, are becoming the mainstay of enterprises' employment. Being better educated, they have different lifestyles than previous generations. "Leisure and entertainment" have become part of their opportunity cost and reduced their labor supply. "Labor shortage" is an endogenous force that helps transform China's growth patter, upgrade the industrial structure and promote urbanization. The seasonal "return of migrant workers" and the "labor shortage" which appears around China's Spring Festival each year have grown into a unique b,t effective collective bargaining mechanism that helps increase migrant workers' wages. Facing labor shortages, governments should regulate the labor market pricing and orientate labor-intensive enterprises towards transition, continue to enhance the social security system for migrant workers and those in rural areas, and make an accurate forecast of the population trend and adjust population policies.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2012CB215203)the National Natural Science Major Fund Project (Grant No. 51036002)
文摘With the increasing number of wind farms in power systems, the scheduling of a single wind farm needs to be improved. For this end, this paper proposes an optimal short-term load dispatch strategy for a single wind farm. Firstly, considering the large number of wind units and the high dimensionality of the scheduling solutions, we analyze the unit load characteristics, from which we extract the unit load characteristic matrix, and then classify the wind power units with the FCM fuzzy clustering algorithm. Secondly, we define the running loss indicator and action loss indicator. Based on the prediction of wind power and the load instructions, we establish a unit commitment model in wind farm, and solve the model using a combination of the fuzzy clustering algorithm and genetic algorithm, which overcomes the difficulty of the high dimensionality of the solution in the wind farm scheduling problem, to obtain the optimal scheduling strategy. Finally, through the simulation of the scheduling strategy for a 45 MW wind farm, we demonstrate the feasibility and effectiveness of the proposed strategy.
基金supported by the National Natural Science Foundation of China (Grant No.50925624)the National Basic Research Program of China ("973" Project) (Grant No.2012CB720404)the Science and Technology Commission of Shanghai Municipality (Grant No.11XD1403100)
文摘Magnetophoresis is one of the most important separation methods in biological and chemical engineering. In this paper,a novel impact parameter on separation efficiency,i.e.,the angle between the vectors of magnetic force and fluid velocity,was derived from the basic equation describing the motion of magnetic beads in microchannels. It is proposed that one of the most important approaches for separation efficiency enhancement is to improve the coordination of magnetic force field and fluid flow field. A T-shaped microchannel magnetophoretic separator was designed based on the angle. And then a two-dimensional dynamic model of magnetic beads moving in microchannels was established to study the separation efficiency of T-shaped microseparator by combined use of finite element method and Runge-Kutta method. The results show that the capture effi-ciency of T-shaped microseparator is much higher than that of the straight microseparator at the same conditions. For small magnetic beads at high fluid velocities,the designed T-shaped microseparator could still keep high separation efficiency whereas the conventional straight microseparator fails to separate the magnetic beads. Further analysis shows that the mechanism of separation efficiency enhancement lies in the synergy of magnetic force field and flow field,which directly leads to large deflected velocity of the magnetic beads from the main stream,and thus increasing the separation efficiency. It is anticipated that the results in this paper are theoretically helpful for the optimum design of highly efficient magnetophoretic separators.
基金National Institute of Biological Science, Beijing 102206,Chinasupported by the Major State Basic Research Development Programs of China(2011CBA00701)+3 种基金the National Natural Science Foundation of China(20973077,20973049)the Doctoral Fund of Ministry of Education of China(20112303110005)the Foundation for the Department of Education of Heilongjiang Province (1152G010,11551077)the Science Foundation for Leading Experts in Academe of Harbin of China(2011RFJGS026)
文摘In this work,we developed the CHARMM all-atom force field parameters for the nonstandard biological residue chalcone,followed by the standard protocol for the CHARMM27 force field development.Target data were generated via ab initio calculations at the MP2/6-31G* and HF/6-31G* levels.The reference data included interaction energies between water and the model compound F(a fragment of chalcone).Bond,angle,and torsion parameters were derived from the ab initio calculations and renormalized to maintain compatibility with the existing CHARMM27 parameters of standard residues.The optimized CHARMM parameters perform well in reproducing the target data.We expect that the extension of the CHARMM27 force field parameters for chalcone will facilitate the molecular simulation studies of the reaction mechanism of intramolecular cyclization of chalcone catalyzed by chalcone isomerase.