There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Num...The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Numerical analysis was applied to solve the dispersion equations for shells filled with or loaded with fluid at various hydrostatic pressures.The results for external pressure showed that non-dimensional axial wave numbers are nearly independent when the pressure is below the critical level.The influence of internal pressure on wave numbers was found significant for the real branch s=1 and the complex branches of dispersion curves.The presence of internal pressure increased the cut on frequencies for the branch s=1 for high order wave modes.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thru...Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.展开更多
A Brownian microscopic heat engine with a particle hopping on a one-dimensional lattice driven by adiscrete and periodic temperature field in a periodic sawtooth potential is investigated.In order to clarify the under...A Brownian microscopic heat engine with a particle hopping on a one-dimensional lattice driven by adiscrete and periodic temperature field in a periodic sawtooth potential is investigated.In order to clarify the underlyingphysical pictures of the heat engine, the heat flow via the potential energy and the kinetic energy of the particles areconsidered simultaneously.Based on describing the jumps among the three states, the expressions of the efficiency andpower output of the heat engine are derived analytically.The general performance characteristic curves are plotted bynumerical calculation.It is found that the power output-efficiency curve is a loop-shaped one, which is similar to onefor a real irreversible heat engine.The influence of the ratio of the temperature of the hot and cold reservoirs and thesawtooth potential on the maximum efficiency and power output is analyzed for some given parameters.When the heatflows via the kinetic energy is neglected, the power output-efficiency curve is an open-shaped one, which is similar to onefor an endroeversible heat engine.展开更多
Mine overburden dumps have posed significant safety issues in the operations of various unit operations of open pit min-ing especially the external dumps. The external dumps are composed of a mixture of fragmented roc...Mine overburden dumps have posed significant safety issues in the operations of various unit operations of open pit min-ing especially the external dumps. The external dumps are composed of a mixture of fragmented rocks and loose soil. Their charac-teristic is comparable to heavily discontinuous solid mass. The conventional approach of limit equilibrium methods provide safety factors for the slope but nothing about the stress-strain characteristics of the large dump mass. The designs of dump location and their respective geometry are integrated for the know-how of the stability characteristics of these dumps. The discrete element method uses a circular disk to represent the granular solid mass and their interactions are described by the Newton’s third law of motion. The displacement is described by the sliding of the circular disk. This work is focused on the modeling efficiency of the discrete element methods to represent the behaviour of mine dump masses with the specified joint plane for the limit equilibrium method. The advantage of the work lies on the ease of information retrieval at any point at the dump mass concerning the stress and strain histories, displacement, failures etc. which when integrated produces a better understanding of the stability of the dump masses.展开更多
Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory...Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.展开更多
In order to clarify the effect of tip clearance (TC) size on fan performance and the flow field at rotor outlet in a small semi-open axial fan, the experimental investigation was carried out. The tip diameter of tes...In order to clarify the effect of tip clearance (TC) size on fan performance and the flow field at rotor outlet in a small semi-open axial fan, the experimental investigation was carried out. The tip diameter of test fan rotor was 180mm and test TC sizes were lmm (TC=1mm) and 4mm (TC=4mm). Fan characteristics tests were carried out for two cases of TC size and three-dimensional velocity fields at rotor outlet were measured using a single slant hot-wire probe at four flow-rate conditions. As a result, it was found that the pressure - flow-rate characteristics curves for two cases showed almost the same tendency. However, the ensemble averaged velocity profiles along radial measurement stations of TC-4mm largely changed compared with that of TC=1mm in cases of small flow-rate condition. From the phase-locked averaging results, it was also found that the vortex existed in the rotor outlet flow field of high flow-rate condition for each TC case. Compared with the vortices for TC=1mm and TC=4mm, the vortex for TC=4mm was stronger than that for TC=1mm.展开更多
A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid...A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid phase and solid phase. To study the seepage behavior of the fluid phase, all the fractures in solid are identified by a block cutting algorithm and form a flow network. Then the hydraulic heads at crack ends are solved. To study the deformation and destruction of solid phase, the 2-order NMM and sub-region boundary element method are combined to solve the stress-strain field. Crack growth is controlled by the well-accepted criterion, including the tension criterion or Mohr-Coulomb criterion for the initialization of cracks and the maximum circumferential stress theory for crack propagation. Once the crack growth occurs, the seepage and deformation analysis will be resolved in the next simulation step. Such weak coupling analysis will continue until the structure becomes stable or is destructed. Five examples are used to verify the new method. The results demonstrate that the method can solve the SIFs at crack tip and fluid flow in crack network precisely, and the method is effective in simulating the hydraulic facture problem. Besides, the NMM shows great convenience and is of high accuracy in simulating the crack growth problem.展开更多
Engineered sequence-specific zinc finger nucleases (ZFNs) make the highly efficient modification of eukaryotic genomes possible.However,most current strategies for developing zinc finger nucleases with customized sequ...Engineered sequence-specific zinc finger nucleases (ZFNs) make the highly efficient modification of eukaryotic genomes possible.However,most current strategies for developing zinc finger nucleases with customized sequence specificities require the construction of numerous tandem arrays of zinc finger proteins (ZFPs),and subsequent largescale in vitro validation of their DNA binding affinities and specificities via bacterial selection.The labor and expertise required in this complex process limits the broad adoption of ZFN technology.An effective computational assisted design strategy will lower the complexity of the production of a pair of functional ZFNs.Here we used the FoldX force field to build 3D models of 420 ZFP-DNA complexes based on zinc finger arrays developed by the Zinc Finger Consortium using OPEN (oligomerized pool engineering).Using nonlinear and linear regression analysis,we found that the calculated protein-DNA binding energy in a modeled ZFP-DNA complex strongly correlates to the failure rate of the zinc finger array to show significant ZFN activity in human cells.In our models,less than 5% of the three-finger arrays with calculated protein-DNA binding energies lower than 13.132 kcal mol 1 fail to form active ZFNs in human cells.By contrast,for arrays with calculated protein-DNA binding energies higher than 5 kcal mol 1,as many as 40% lacked ZFN activity in human cells.Therefore,we suggest that the FoldX force field can be useful in reducing the failure rate and increasing efficiency in the design of ZFNs.展开更多
In this study, a visualization-based experiment was performed to measure the motion of the nanowire under a magnetic field. A simulation method based on a multiple reference flame model (MRF model) was used to calcu...In this study, a visualization-based experiment was performed to measure the motion of the nanowire under a magnetic field. A simulation method based on a multiple reference flame model (MRF model) was used to calcu- late fluid torque. Here, it was validated with the experimental data and theoretical results. Fluid torque of steady rotated nanowire was simulated and compared using experiment and theoretical models. The unsteady rotated condition was studied using transient simulation to compare with theory and the results showed that the accelera- tion of nanowire did not affect the flow field, indicating that the theoretical models based on the steady condition were still valid. The influence of solid walls on nanowire rotation was also studied here. The results showed that if the nanowire was placed close to the wall, the viscous force of wall would increase the velocity gradient around the nanowire, causing higher torque predictions. The fluid torque decreased quickly when the vertical distance between nanowire and wall exceeded 5 times the diameter of the wire.展开更多
When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obs...When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obstacle and is related with the noise problems of aeronautical and other industrial engineering. The characteristic and the mechanism of self-induced flow oscillation, have to be clarified to control various noise problems. But, it seems that the characteristics of the oscillated flowfield and the mechanism of an oscillation have to be more cleared to control the oscillation. This paper aims to clarify the effect of the pressure ratio and the obstacle position and the mechanism of self-induced flow oscillation by numerical analysis and experiment, when the underexpanded su- personic jet impinges on the cylindrical body. From the result of this study, it is clear that occurrence of the self-induced flow osciUation depends on the pressure balance in the flowfield.展开更多
The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.I...The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.In the current work,MD simulations of the WT and three hotspot mutants (D51A,Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues.The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values,verifying that these three residues were indeed hotspots of the binding complex.Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89.For binding by hotspots Y54 and Y55,van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction.For comparison,calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation.Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex.The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.展开更多
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
文摘The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Numerical analysis was applied to solve the dispersion equations for shells filled with or loaded with fluid at various hydrostatic pressures.The results for external pressure showed that non-dimensional axial wave numbers are nearly independent when the pressure is below the critical level.The influence of internal pressure on wave numbers was found significant for the real branch s=1 and the complex branches of dispersion curves.The presence of internal pressure increased the cut on frequencies for the branch s=1 for high order wave modes.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
基金Supported by the Natural Science Foundation of China under Grant No.50675162the Program of Introducing Talents of Discipline to Universities under Grant No.B08031the Key Project of Hubei Province Science & Technology Fund under Grant No.2008CAD027
文摘Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.
基金Supported by the National Natural Science Foundation of China under Grant No.10765004
文摘A Brownian microscopic heat engine with a particle hopping on a one-dimensional lattice driven by adiscrete and periodic temperature field in a periodic sawtooth potential is investigated.In order to clarify the underlyingphysical pictures of the heat engine, the heat flow via the potential energy and the kinetic energy of the particles areconsidered simultaneously.Based on describing the jumps among the three states, the expressions of the efficiency andpower output of the heat engine are derived analytically.The general performance characteristic curves are plotted bynumerical calculation.It is found that the power output-efficiency curve is a loop-shaped one, which is similar to onefor a real irreversible heat engine.The influence of the ratio of the temperature of the hot and cold reservoirs and thesawtooth potential on the maximum efficiency and power output is analyzed for some given parameters.When the heatflows via the kinetic energy is neglected, the power output-efficiency curve is an open-shaped one, which is similar to onefor an endroeversible heat engine.
文摘Mine overburden dumps have posed significant safety issues in the operations of various unit operations of open pit min-ing especially the external dumps. The external dumps are composed of a mixture of fragmented rocks and loose soil. Their charac-teristic is comparable to heavily discontinuous solid mass. The conventional approach of limit equilibrium methods provide safety factors for the slope but nothing about the stress-strain characteristics of the large dump mass. The designs of dump location and their respective geometry are integrated for the know-how of the stability characteristics of these dumps. The discrete element method uses a circular disk to represent the granular solid mass and their interactions are described by the Newton’s third law of motion. The displacement is described by the sliding of the circular disk. This work is focused on the modeling efficiency of the discrete element methods to represent the behaviour of mine dump masses with the specified joint plane for the limit equilibrium method. The advantage of the work lies on the ease of information retrieval at any point at the dump mass concerning the stress and strain histories, displacement, failures etc. which when integrated produces a better understanding of the stability of the dump masses.
文摘Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.
文摘In order to clarify the effect of tip clearance (TC) size on fan performance and the flow field at rotor outlet in a small semi-open axial fan, the experimental investigation was carried out. The tip diameter of test fan rotor was 180mm and test TC sizes were lmm (TC=1mm) and 4mm (TC=4mm). Fan characteristics tests were carried out for two cases of TC size and three-dimensional velocity fields at rotor outlet were measured using a single slant hot-wire probe at four flow-rate conditions. As a result, it was found that the pressure - flow-rate characteristics curves for two cases showed almost the same tendency. However, the ensemble averaged velocity profiles along radial measurement stations of TC-4mm largely changed compared with that of TC=1mm in cases of small flow-rate condition. From the phase-locked averaging results, it was also found that the vortex existed in the rotor outlet flow field of high flow-rate condition for each TC case. Compared with the vortices for TC=1mm and TC=4mm, the vortex for TC=4mm was stronger than that for TC=1mm.
基金supported by the National Natural Science Foundation of China(Grant Nos.51439005&51209235)the National Basic Research Program of China("973"Project)(Grant Nos.2013CB035904,2013CB-036406)
文摘A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid phase and solid phase. To study the seepage behavior of the fluid phase, all the fractures in solid are identified by a block cutting algorithm and form a flow network. Then the hydraulic heads at crack ends are solved. To study the deformation and destruction of solid phase, the 2-order NMM and sub-region boundary element method are combined to solve the stress-strain field. Crack growth is controlled by the well-accepted criterion, including the tension criterion or Mohr-Coulomb criterion for the initialization of cracks and the maximum circumferential stress theory for crack propagation. Once the crack growth occurs, the seepage and deformation analysis will be resolved in the next simulation step. Such weak coupling analysis will continue until the structure becomes stable or is destructed. Five examples are used to verify the new method. The results demonstrate that the method can solve the SIFs at crack tip and fluid flow in crack network precisely, and the method is effective in simulating the hydraulic facture problem. Besides, the NMM shows great convenience and is of high accuracy in simulating the crack growth problem.
基金supported by the National Natural Science Foundation of China (Grant No.30901018)the China Postdoctoral Science Foundation (Grant No.201003388)
文摘Engineered sequence-specific zinc finger nucleases (ZFNs) make the highly efficient modification of eukaryotic genomes possible.However,most current strategies for developing zinc finger nucleases with customized sequence specificities require the construction of numerous tandem arrays of zinc finger proteins (ZFPs),and subsequent largescale in vitro validation of their DNA binding affinities and specificities via bacterial selection.The labor and expertise required in this complex process limits the broad adoption of ZFN technology.An effective computational assisted design strategy will lower the complexity of the production of a pair of functional ZFNs.Here we used the FoldX force field to build 3D models of 420 ZFP-DNA complexes based on zinc finger arrays developed by the Zinc Finger Consortium using OPEN (oligomerized pool engineering).Using nonlinear and linear regression analysis,we found that the calculated protein-DNA binding energy in a modeled ZFP-DNA complex strongly correlates to the failure rate of the zinc finger array to show significant ZFN activity in human cells.In our models,less than 5% of the three-finger arrays with calculated protein-DNA binding energies lower than 13.132 kcal mol 1 fail to form active ZFNs in human cells.By contrast,for arrays with calculated protein-DNA binding energies higher than 5 kcal mol 1,as many as 40% lacked ZFN activity in human cells.Therefore,we suggest that the FoldX force field can be useful in reducing the failure rate and increasing efficiency in the design of ZFNs.
基金supported by the National Natural Science Foundation of China (Grant No. 50876006)the Fundamental Research Funds for the Central Universities (Grant No. 2011YJS053)
文摘In this study, a visualization-based experiment was performed to measure the motion of the nanowire under a magnetic field. A simulation method based on a multiple reference flame model (MRF model) was used to calcu- late fluid torque. Here, it was validated with the experimental data and theoretical results. Fluid torque of steady rotated nanowire was simulated and compared using experiment and theoretical models. The unsteady rotated condition was studied using transient simulation to compare with theory and the results showed that the accelera- tion of nanowire did not affect the flow field, indicating that the theoretical models based on the steady condition were still valid. The influence of solid walls on nanowire rotation was also studied here. The results showed that if the nanowire was placed close to the wall, the viscous force of wall would increase the velocity gradient around the nanowire, causing higher torque predictions. The fluid torque decreased quickly when the vertical distance between nanowire and wall exceeded 5 times the diameter of the wire.
文摘When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obstacle and is related with the noise problems of aeronautical and other industrial engineering. The characteristic and the mechanism of self-induced flow oscillation, have to be clarified to control various noise problems. But, it seems that the characteristics of the oscillated flowfield and the mechanism of an oscillation have to be more cleared to control the oscillation. This paper aims to clarify the effect of the pressure ratio and the obstacle position and the mechanism of self-induced flow oscillation by numerical analysis and experiment, when the underexpanded su- personic jet impinges on the cylindrical body. From the result of this study, it is clear that occurrence of the self-induced flow osciUation depends on the pressure balance in the flowfield.
基金the National Natural Science Foundation of China(21003048,10974054,and 20933002)Shanghai PuJiang Program (09PJ1404000) for financial support XXY is also supported by "Scientific Research Foundation for Agricultural Machinery Bureau of Jiangsu Province (gxz10008)"CGJ is also supported by "the Fundamental Research Funds for the Central Universities"
文摘The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.In the current work,MD simulations of the WT and three hotspot mutants (D51A,Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues.The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values,verifying that these three residues were indeed hotspots of the binding complex.Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89.For binding by hotspots Y54 and Y55,van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction.For comparison,calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation.Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex.The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.