In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume...In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.展开更多
Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhanc...Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhancing effect of horizontal reinforcement on vertical reinforced composite foundation was analyzed.A simplified calculation method for such two-direction reinforced working system was presented.A model experiment was carried out to validate the proposed method.In the experiment,geocell reinforcement worked as the horizontal reinforcement,while gravel pile composite foundation worked as the vertical reinforcement.The results show that the calculated curve is close to the measured one.The installation of geosynthetic reinforcement can increase the bearing capacity of composite foundation by nearly 68% at normal foundation settlement,which suggests that the enhancing effect by geosynthetic reinforcement should be taken into account in current design/analysis methods.展开更多
An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition ...An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
The boreal spring Antarctic Oscillation(AAO)has a significant impact on the spring and summer climate in China.This study evaluates the capability of the NCEP's Climate Forecast System,version 2(CFSv2),in predicti...The boreal spring Antarctic Oscillation(AAO)has a significant impact on the spring and summer climate in China.This study evaluates the capability of the NCEP's Climate Forecast System,version 2(CFSv2),in predicting the boreal spring AAO for the period 1983-2015.The results indicate that CFSv2 has poor skill in predicting the spring AAO,failing to predict the zonally symmetric spatial pattern of the AAO,with an insignificant correlation of 0.02 between the predicted and observed AAO Index(AAOI).Considering the interannual increment approach can amplify the prediction signals,we firstly establish a dynamical-statistical model to improve the interannual increment of the AAOI(DY AAOI),with two predictors of CFSv2-forecasted concurrent spring sea surface temperatures and observed preceding autumn sea ice.This dynamical-statistical model demonstrates good capability in predicting DY AAOI,with a significant correlation coeffcient of 0.58 between the observation and prediction during 1983-2015 in the two-year-out cross-validation.Then,we obtain an improved AAOI by adding the improved DY AAOI to the preceding observed AAOI.The improved AAOI shows a significant correlation coeffcient of 0.45 with the observed AAOI during 1983-2015.Moreover,the unrealistic atmospheric response to March-April-May sea ice in CFSv2 may be the possible cause for the failure of CFSv2 to predict the AAO.This study gives new clues regarding AAO prediction and short-term climate prediction.展开更多
The authors previously introduced a semi-empirical formula that enabled fast estimation of the added resistance of ships in head waves, and in this study the formula is further refined for easy use in engineering appl...The authors previously introduced a semi-empirical formula that enabled fast estimation of the added resistance of ships in head waves, and in this study the formula is further refined for easy use in engineering applications. It includes an alternative ship draft correction coefficient, which better accounts for the wave pressure decay with ship’s draft. In addition, it only uses the speed and main characteristics of the ship and wave environment as input, and has been simplified to the extent that it can be readily processed using a pocket calculator. Extensive validations are conducted for different ship types at low to moderate speeds in various typical irregular sea conditions, and encouraging results are obtained. This relevant and topical research lies within the framework of the recent IMO MEPC.232(65) (2013) EEDI guidelines for estimating the minimum powering of ships in adverse weather conditions, which specify for the use of simple methods in current Level 2 assessment within engineering applications.Keywords: added resistance, minimum power, IMO regulation, EEDI regulation, weather coefficient, semi-empirical formulas, ships, head waves展开更多
The present work deals with the removal of Ni(II) ion using activated charcoal prepared from the dry leaves of bitter orange tree (Citrus aurantium). The effects of its concentration, adsorbent dosage, particle si...The present work deals with the removal of Ni(II) ion using activated charcoal prepared from the dry leaves of bitter orange tree (Citrus aurantium). The effects of its concentration, adsorbent dosage, particle size, pH and temperature on removal of Ni(II) ion have been studied. The removal of Ni(II) ion is higher at lower concentration and gradually decreases as the concentration increases. The pH of 5 was the most suitable. The removal of Ni(II) ion increases with the increases in the adsorbent dosage. The effect of particle size reveals that the percentage removal of Ni(II) ion decreases with increase in particle size of adsorbent. The effect of temperature shows that as temperature increases, the percentage removal of Ni(II) ion decreases and this is due to the interaction forces weakening at high temperature. Thermodynamic parameters from the effect of temperature were calculated.展开更多
基金Supported by Australia Research Council(No.DP0451966)
文摘In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.
基金Project (2006AA11Z104) supported by the National High-Tech Research and Development Program("863" Program)
文摘Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhancing effect of horizontal reinforcement on vertical reinforced composite foundation was analyzed.A simplified calculation method for such two-direction reinforced working system was presented.A model experiment was carried out to validate the proposed method.In the experiment,geocell reinforcement worked as the horizontal reinforcement,while gravel pile composite foundation worked as the vertical reinforcement.The results show that the calculated curve is close to the measured one.The installation of geosynthetic reinforcement can increase the bearing capacity of composite foundation by nearly 68% at normal foundation settlement,which suggests that the enhancing effect by geosynthetic reinforcement should be taken into account in current design/analysis methods.
基金Projects(50479057, 50639060) supported by the National Natural Science Foundation of China
文摘An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600703)the funding of the Jiangsu Innovation & Entrepreneurship Team and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The boreal spring Antarctic Oscillation(AAO)has a significant impact on the spring and summer climate in China.This study evaluates the capability of the NCEP's Climate Forecast System,version 2(CFSv2),in predicting the boreal spring AAO for the period 1983-2015.The results indicate that CFSv2 has poor skill in predicting the spring AAO,failing to predict the zonally symmetric spatial pattern of the AAO,with an insignificant correlation of 0.02 between the predicted and observed AAO Index(AAOI).Considering the interannual increment approach can amplify the prediction signals,we firstly establish a dynamical-statistical model to improve the interannual increment of the AAOI(DY AAOI),with two predictors of CFSv2-forecasted concurrent spring sea surface temperatures and observed preceding autumn sea ice.This dynamical-statistical model demonstrates good capability in predicting DY AAOI,with a significant correlation coeffcient of 0.58 between the observation and prediction during 1983-2015 in the two-year-out cross-validation.Then,we obtain an improved AAOI by adding the improved DY AAOI to the preceding observed AAOI.The improved AAOI shows a significant correlation coeffcient of 0.45 with the observed AAOI during 1983-2015.Moreover,the unrealistic atmospheric response to March-April-May sea ice in CFSv2 may be the possible cause for the failure of CFSv2 to predict the AAO.This study gives new clues regarding AAO prediction and short-term climate prediction.
基金Partly Supported by the Collaborative Project SHOPERA under Grant Agreement No.605221
文摘The authors previously introduced a semi-empirical formula that enabled fast estimation of the added resistance of ships in head waves, and in this study the formula is further refined for easy use in engineering applications. It includes an alternative ship draft correction coefficient, which better accounts for the wave pressure decay with ship’s draft. In addition, it only uses the speed and main characteristics of the ship and wave environment as input, and has been simplified to the extent that it can be readily processed using a pocket calculator. Extensive validations are conducted for different ship types at low to moderate speeds in various typical irregular sea conditions, and encouraging results are obtained. This relevant and topical research lies within the framework of the recent IMO MEPC.232(65) (2013) EEDI guidelines for estimating the minimum powering of ships in adverse weather conditions, which specify for the use of simple methods in current Level 2 assessment within engineering applications.Keywords: added resistance, minimum power, IMO regulation, EEDI regulation, weather coefficient, semi-empirical formulas, ships, head waves
文摘The present work deals with the removal of Ni(II) ion using activated charcoal prepared from the dry leaves of bitter orange tree (Citrus aurantium). The effects of its concentration, adsorbent dosage, particle size, pH and temperature on removal of Ni(II) ion have been studied. The removal of Ni(II) ion is higher at lower concentration and gradually decreases as the concentration increases. The pH of 5 was the most suitable. The removal of Ni(II) ion increases with the increases in the adsorbent dosage. The effect of particle size reveals that the percentage removal of Ni(II) ion decreases with increase in particle size of adsorbent. The effect of temperature shows that as temperature increases, the percentage removal of Ni(II) ion decreases and this is due to the interaction forces weakening at high temperature. Thermodynamic parameters from the effect of temperature were calculated.