As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning co...As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning compression of NiTi SMA was analyzed according to the slab method as the well as plastic yield criterion. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to study the microstructural evolution as well as deformation behavior of NiTi samples under local canning compression. Increasing the hydrostatic pressure with the increase in the outer diameters of the steel cans is responsible for suppressing the initiation and growth of the micro-cracks, which contributes to enhancing the plasticity ofNiTi SMA and avoiding the occurrence of brittle fracture. Plastic deformation of NiTi SMA under a three-dimensional compressive stress state meets von-Mises yield criterion at the true strains ranging from about 0.15 to 0.50, while in the case of larger plastic strain, von-Mises yield criterion is unable to be met since the amorphous phase arises in the deformed NiTi sample.展开更多
Soil-rock mixture(S-RM)is a widely distributed geotechnical medium composed of "soil" and "rock block" different both in size and strength. Internal rock blocks form special and variable meso-struc...Soil-rock mixture(S-RM)is a widely distributed geotechnical medium composed of "soil" and "rock block" different both in size and strength. Internal rock blocks form special and variable meso-structural characteristics of S-RM. The objective of this work was to study the control mechanism of meso-structural characteristics on mechanical properties of S-RM. For S-RM containing randomly generated polygonal rock blocks, a series of biaxial tests based on DEM were conducted. On the basis of research on the effects of rock blocks' breakability and sample lateral boundary type(rigid, flexible) on macroscopic mechanical behavior of S-RM, an expanded Mohr-Coulomb criterion in power function form was proposed to represent the strength envelop. At the mesoscopic level, the variations of meso-structure such as rotation of rock block, and the formation mechanism and evolution process of the shear band during tests were investigated. The results show that for S-RM with a high content of rock block, translation, rotating and breakage of rock blocks have crucial effects on mechanical behavior of S-RM. The formation and location of the shear band inside S-RM sample are also controlled by breakability and arrangement of rock blocks.展开更多
The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure ...The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock(Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3 D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.展开更多
In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. T...In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. The total elastic stress-field distributions is determined using the elastodynamic equation. The effects of unloading rate and dynamic mechanical parameters of isotropic deep rock masses on the zonal disintegration phenomenon of the surrounding rock masses around a deep spherical tunnel as well as the total elastic stress field distributions are considered. The number and size of fractured and non-fractured zones are determined by using the Hoek-Brown criterion. Numerical computation is carried out. It is found from numerical results that the number of fractured zones increases with increasing the disturbance coefficient, in-situ stress, unloading time and unloading rate, and it decreases with increasing parameter geological strength index, the strength parameter and the uniaxial compressive strength of intact rock.展开更多
The paper is summarizing latest results connected with application of the incubation time approach to problems of dynamic fracture of rock materials. Incubation time based fracture criteria for intact media and media ...The paper is summarizing latest results connected with application of the incubation time approach to problems of dynamic fracture of rock materials. Incubation time based fracture criteria for intact media and media with cracks are discussed. Available experimental data on high rate fracture of different rock materials and incubation time based fracture criteria are used in order to evaluate critical parameters of causing fracture in these materials. Previously discovered possibility to optimize (minimize) energy input for fracture is discussed in connection to industrial rock fracture processes. It is shown that optimal value of momentum associated with critical load in order to initialize fracture in rock media does strongly depend on the incubation time and the impact duration. Existence of optimal load shapes minimizing momentum for a single fracturing impact or a sequence of periodic fracturing impacts is demonstrated.展开更多
Metallic glasses(MGs)constitute an emerging class of advanced structural materials due to their excellent mechanical properties.However,brittle failure at room temperature and the resultant complicated fracture behavi...Metallic glasses(MGs)constitute an emerging class of advanced structural materials due to their excellent mechanical properties.However,brittle failure at room temperature and the resultant complicated fracture behavior greatly limit their wide engineering applications.Over the past decades,the deformation and fracture in ductile or brittle mode referring to material compositions,load conditions,sample size,etc.,have been widely studied,and significant progress has been made in understanding the failure behavior of MGs.Micromechanisms of fracture have been revealed involving shear banding,cavitation and the nature of the crack tip field.The ductile-to-brittle transition and inherent governing parameters have been found.To well describe and predict the failure behavior of MGs,failure criteria for ductile and brittle MGs have been established empirically or based on atomic interactions.In this paper,we provide a detailed review of the above advances and identify outstanding issues in the failure of MGs that need to be further clarified.展开更多
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning compression of NiTi SMA was analyzed according to the slab method as the well as plastic yield criterion. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to study the microstructural evolution as well as deformation behavior of NiTi samples under local canning compression. Increasing the hydrostatic pressure with the increase in the outer diameters of the steel cans is responsible for suppressing the initiation and growth of the micro-cracks, which contributes to enhancing the plasticity ofNiTi SMA and avoiding the occurrence of brittle fracture. Plastic deformation of NiTi SMA under a three-dimensional compressive stress state meets von-Mises yield criterion at the true strains ranging from about 0.15 to 0.50, while in the case of larger plastic strain, von-Mises yield criterion is unable to be met since the amorphous phase arises in the deformed NiTi sample.
基金Projects(51323014,51479095)supported by the National Natural Science Foundation of ChinaProject(20111081125)supported by Independent Research Plan of Tsinghua University,ChinaProject(2013-KY-4)supported by the State Key Laboratory of Hydroscience and Engineering Project,China
文摘Soil-rock mixture(S-RM)is a widely distributed geotechnical medium composed of "soil" and "rock block" different both in size and strength. Internal rock blocks form special and variable meso-structural characteristics of S-RM. The objective of this work was to study the control mechanism of meso-structural characteristics on mechanical properties of S-RM. For S-RM containing randomly generated polygonal rock blocks, a series of biaxial tests based on DEM were conducted. On the basis of research on the effects of rock blocks' breakability and sample lateral boundary type(rigid, flexible) on macroscopic mechanical behavior of S-RM, an expanded Mohr-Coulomb criterion in power function form was proposed to represent the strength envelop. At the mesoscopic level, the variations of meso-structure such as rotation of rock block, and the formation mechanism and evolution process of the shear band during tests were investigated. The results show that for S-RM with a high content of rock block, translation, rotating and breakage of rock blocks have crucial effects on mechanical behavior of S-RM. The formation and location of the shear band inside S-RM sample are also controlled by breakability and arrangement of rock blocks.
基金Project(2015M570678)supported by China Postdoctoral Science Foundation funded project
文摘The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock(Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3 D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.
基金Projects(51325903,51279218,51478065)supported by the National Natural Science Foundation of ChinaProject(2014CB046903)supported by the National Basic of Research Program ChinaProjects(cstc2013kjrc-ljrccj0001,cstc2013jcyjys30002,cstc2015jcyjys30001)supported by Chongqing Science and Technology Commission(CSTC),Chongqing,China
文摘In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. The total elastic stress-field distributions is determined using the elastodynamic equation. The effects of unloading rate and dynamic mechanical parameters of isotropic deep rock masses on the zonal disintegration phenomenon of the surrounding rock masses around a deep spherical tunnel as well as the total elastic stress field distributions are considered. The number and size of fractured and non-fractured zones are determined by using the Hoek-Brown criterion. Numerical computation is carried out. It is found from numerical results that the number of fractured zones increases with increasing the disturbance coefficient, in-situ stress, unloading time and unloading rate, and it decreases with increasing parameter geological strength index, the strength parameter and the uniaxial compressive strength of intact rock.
基金supported by RFBR Research (Grant Nos. 10-01-00810-a, 11-01-00491-a and 10-01-91154-GFEN_a)Russian Federation State Contracts and Academic Programs of the Russian Academy of Sciences
文摘The paper is summarizing latest results connected with application of the incubation time approach to problems of dynamic fracture of rock materials. Incubation time based fracture criteria for intact media and media with cracks are discussed. Available experimental data on high rate fracture of different rock materials and incubation time based fracture criteria are used in order to evaluate critical parameters of causing fracture in these materials. Previously discovered possibility to optimize (minimize) energy input for fracture is discussed in connection to industrial rock fracture processes. It is shown that optimal value of momentum associated with critical load in order to initialize fracture in rock media does strongly depend on the incubation time and the impact duration. Existence of optimal load shapes minimizing momentum for a single fracturing impact or a sequence of periodic fracturing impacts is demonstrated.
基金supported by the National Natural Science Foundation Basic Science Center Program for"Multiscale Problems in Nonlinear Mechanics"(Grant No.11988102)the National Natural Science Foundation of China(Grant Nos.11972346 and 11790292)+3 种基金the National Key Research and Development Program of China(Grant No.2017YFB0702003)the Strategic Priority Research Program(Grant Nos.XDB22040302 and XDB22040303)the Key Research Program of Frontier Sciences(Grant No.QYZDJSSW-JSC011)the Science Challenge Project(Grant No.TZ2018001).
文摘Metallic glasses(MGs)constitute an emerging class of advanced structural materials due to their excellent mechanical properties.However,brittle failure at room temperature and the resultant complicated fracture behavior greatly limit their wide engineering applications.Over the past decades,the deformation and fracture in ductile or brittle mode referring to material compositions,load conditions,sample size,etc.,have been widely studied,and significant progress has been made in understanding the failure behavior of MGs.Micromechanisms of fracture have been revealed involving shear banding,cavitation and the nature of the crack tip field.The ductile-to-brittle transition and inherent governing parameters have been found.To well describe and predict the failure behavior of MGs,failure criteria for ductile and brittle MGs have been established empirically or based on atomic interactions.In this paper,we provide a detailed review of the above advances and identify outstanding issues in the failure of MGs that need to be further clarified.