The authors have shown that the process data can be modeled on the basis of chemical thermodynamics. The authors offer general information of the equation in the presence of a magnetic field. As a result, studies have...The authors have shown that the process data can be modeled on the basis of chemical thermodynamics. The authors offer general information of the equation in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of information.展开更多
The authors have shown that the process of information and thinking can be modeled on the basis of chemical thermodynamics. The authors offer general equations to calculate the thinking of the work of judgment the L a...The authors have shown that the process of information and thinking can be modeled on the basis of chemical thermodynamics. The authors offer general equations to calculate the thinking of the work of judgment the L and of entropy solutions G in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of the process of thinking.展开更多
Premixed and partially premixed flames (PPFs) of H2/CO/air syngas are studied numerically to investigate the effect of pressure on syngas PPF structure. Chemical characteristics of the syngas flame at different pressu...Premixed and partially premixed flames (PPFs) of H2/CO/air syngas are studied numerically to investigate the effect of pressure on syngas PPF structure. Chemical characteristics of the syngas flame at different pressures are investigated based on reaction limit analysis using a one-dimensional configuration. The results show that CO affects the syngas reaction limits through both physical effects that consist mainly in dilution and chemical effects that are related to both R23 (CO+OH=CO2+H) and HCO pathway. In particular, the HCO pathway weakens the flame at low pressures due to the chain-terminating effect of R25 (HCO+O2=CO+HO2) and R26 (HCO+H=CO+H2), and enhances the flame at high pressures because of the contribution of R25 to the HO2chain-branching process. These CO chemical characteristics are also observed in the premixed zone of 50%H2+50%CO syngas PPFs whereas only R23 is important in the non-premixed zone.展开更多
基金National Natural Science Foundation of China(51475362)Scientific Research Program Funded by Shaanxi Provincial Education Department(12JK0657)Research Fund for the Doctoral Program of Higher Education of China(20136121110001)
文摘The authors have shown that the process data can be modeled on the basis of chemical thermodynamics. The authors offer general information of the equation in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of information.
文摘The authors have shown that the process of information and thinking can be modeled on the basis of chemical thermodynamics. The authors offer general equations to calculate the thinking of the work of judgment the L and of entropy solutions G in the presence of a magnetic field. As a result, studies have shown that the magnetic effects strongly influence the thermodynamics of the process of thinking.
基金supported by the National Key Basic Research Program of China(2014CB239603)the National Natural Science Foundation of China(U1738113,91441131)
文摘Premixed and partially premixed flames (PPFs) of H2/CO/air syngas are studied numerically to investigate the effect of pressure on syngas PPF structure. Chemical characteristics of the syngas flame at different pressures are investigated based on reaction limit analysis using a one-dimensional configuration. The results show that CO affects the syngas reaction limits through both physical effects that consist mainly in dilution and chemical effects that are related to both R23 (CO+OH=CO2+H) and HCO pathway. In particular, the HCO pathway weakens the flame at low pressures due to the chain-terminating effect of R25 (HCO+O2=CO+HO2) and R26 (HCO+H=CO+H2), and enhances the flame at high pressures because of the contribution of R25 to the HO2chain-branching process. These CO chemical characteristics are also observed in the premixed zone of 50%H2+50%CO syngas PPFs whereas only R23 is important in the non-premixed zone.