Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C...Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.展开更多
For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model...For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model.Firstly,rocks are divided into three parts,i.e.,voids,a damaged part and an undamaged part in the course of loading.The void ratio was applied to describing the changes of voids or pores during the deformation process.Then,using statistical damage theory,a constitutive model was developed for rocks to describe their strain softening and hardening on the basis of investigating the relationship between the net stress and apparent stress,in which the influence of volume changes on rock behavior was correctly taken into account,such as the initial phase of compaction and the latter stage of dilation.Thirdly,a method of determining model parameters was also presented.Finally,this model was used to compare the theoretical results with those observed from experiments under conventional triaxial loading conditions.展开更多
The original descriptive model of shear stress and shear displacement only reflects the stress deformation characteristics of plastic structural plane.The index model was revised and piecewise index model was built to...The original descriptive model of shear stress and shear displacement only reflects the stress deformation characteristics of plastic structural plane.The index model was revised and piecewise index model was built to describe the stress deformation characteristics of plastic structural plane and brittle structural plane.The relation of stress and strain to the failure mode of structural plane considering the effect of its shape was investigated,and a model which could reflect the relation between undulate angle and shear strength was built.The result indicates that structural plane presents nonlinear characteristics,specifically,the value of undulate angle,as well as corresponding shear strength,becomes larger as the normal stress decreases.展开更多
Objective: To study biomechanical changes of newly formed bones 24 weeks after repairing large defects of long bones of goats using heterogeneous deproteinated bone (DPB) prepared by modified methods as an engineer...Objective: To study biomechanical changes of newly formed bones 24 weeks after repairing large defects of long bones of goats using heterogeneous deproteinated bone (DPB) prepared by modified methods as an engineering scaffold. Methods: According to a fully randomized design, 18 goats were evenly divided into three groups: normal bone control group (Group A), autologous bone group (Group B) and experimental group (Group C). Each goat in Groups B and C were subjected to the periosteum and bone defect at middle-lower part of the right tibia (20% of the whole tibia in length), followed by autologous bone or DPB plus autolognus MSCs + rhBMP2 implantation, respectively and semi- ring slot fixation; while goats in Group A did not perform osteotomy. At 24 weeks after surgery, biomechanical tests were carried out on the tibias. Results: At 24 weeks after surgery, the results of anticompression test on tibias in three groups were recorded by a functional recorder presented as linear pressure-deformation curve. The shapes of the curves and their change tendency were similar among three groups. The ultimate pressure values were 10.74 MPa±1.23 MPa, 10. 11 MPa±1.35 MPa and 10.22 MPa±1.32 MPa and fracture compression rates were 26.82%±0.87%, 27.17%±0.75% and 28.22%±1.12% in Groups A, B and C, respectively. Comparisons of anti-compression ultimate pressures and fracture compression rates among three groups demonstrated no significant difference (PAB=0.415, PBC=0.494). Three-point antibend test on tibias was recorded as load-deformation curves, and the shapes of the curves and their change tendency were similar among three groups. The ultimate pressure values of the anti-bend test were 481.52 N±12.45 N, 478.34 N±14.68 N and 475.62 N±13.41 N and the fracture bend rates were 2.62 mm±0.12 mm, 2.61 mm±0.15 mm and 2.81 mm±0.13 mm in Groups A, B and C, respectively. There was no significant difference between groups (PAB=0.7, PBc=0.448). The ultimate anti-torsion torque values were 6.55 N.mi-0.25 N.m, 6.34 N'm^0.18 N'm and 6.42 N'm^0.21 N'm and fracture torsion rates were 29.51°±1.64°, 28.88±1.46° and 28.81°±1.33° in Groups A, B and C, respectively. There was no significant difference between groups (PAB=0.123, PBc=0.346). Conclusions: The biomechanical characteristics of newly formed bones from heterogeneous DPB for repairing large segmental long bone defect are comparable to those of normal bones and autologous bones. DPB has the potential for clinical usage as bone graft material.展开更多
基金Project(P2018G045)supported by the Science&Technology Research and Development Program of China RailwayProject(2018CFA013)supported by the Hubei Provincial Natural Science Foundation Innovation Group,China+1 种基金Project(KFJ-STS-QYZD-174)supported by the Science and Technology Service Network Initiative of the Chinese Academy of SciencesProject(51709257)supported by the National Natural Science Foundation of China。
文摘Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.
基金Project(2006AA11Z104) supported by the National High-Tech Research and Development Program of China
文摘For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model.Firstly,rocks are divided into three parts,i.e.,voids,a damaged part and an undamaged part in the course of loading.The void ratio was applied to describing the changes of voids or pores during the deformation process.Then,using statistical damage theory,a constitutive model was developed for rocks to describe their strain softening and hardening on the basis of investigating the relationship between the net stress and apparent stress,in which the influence of volume changes on rock behavior was correctly taken into account,such as the initial phase of compaction and the latter stage of dilation.Thirdly,a method of determining model parameters was also presented.Finally,this model was used to compare the theoretical results with those observed from experiments under conventional triaxial loading conditions.
基金Project(50878212) supported by National Natural Science Foundation of ChinaProject(1298011-2) supported by the Funding of Scientific Research and Technology Development Projects of Guangxi Province,China+2 种基金Project(12JJ6052) supported by Natural Science Foundation of Hunan Province,ChinaProject(kfj120402) supported Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province(Changsha University of Science&Technology),ChinaProject(13C1010) supported by the Research Foundation of Education Bureau of Hunan Province,China
文摘The original descriptive model of shear stress and shear displacement only reflects the stress deformation characteristics of plastic structural plane.The index model was revised and piecewise index model was built to describe the stress deformation characteristics of plastic structural plane and brittle structural plane.The relation of stress and strain to the failure mode of structural plane considering the effect of its shape was investigated,and a model which could reflect the relation between undulate angle and shear strength was built.The result indicates that structural plane presents nonlinear characteristics,specifically,the value of undulate angle,as well as corresponding shear strength,becomes larger as the normal stress decreases.
文摘Objective: To study biomechanical changes of newly formed bones 24 weeks after repairing large defects of long bones of goats using heterogeneous deproteinated bone (DPB) prepared by modified methods as an engineering scaffold. Methods: According to a fully randomized design, 18 goats were evenly divided into three groups: normal bone control group (Group A), autologous bone group (Group B) and experimental group (Group C). Each goat in Groups B and C were subjected to the periosteum and bone defect at middle-lower part of the right tibia (20% of the whole tibia in length), followed by autologous bone or DPB plus autolognus MSCs + rhBMP2 implantation, respectively and semi- ring slot fixation; while goats in Group A did not perform osteotomy. At 24 weeks after surgery, biomechanical tests were carried out on the tibias. Results: At 24 weeks after surgery, the results of anticompression test on tibias in three groups were recorded by a functional recorder presented as linear pressure-deformation curve. The shapes of the curves and their change tendency were similar among three groups. The ultimate pressure values were 10.74 MPa±1.23 MPa, 10. 11 MPa±1.35 MPa and 10.22 MPa±1.32 MPa and fracture compression rates were 26.82%±0.87%, 27.17%±0.75% and 28.22%±1.12% in Groups A, B and C, respectively. Comparisons of anti-compression ultimate pressures and fracture compression rates among three groups demonstrated no significant difference (PAB=0.415, PBC=0.494). Three-point antibend test on tibias was recorded as load-deformation curves, and the shapes of the curves and their change tendency were similar among three groups. The ultimate pressure values of the anti-bend test were 481.52 N±12.45 N, 478.34 N±14.68 N and 475.62 N±13.41 N and the fracture bend rates were 2.62 mm±0.12 mm, 2.61 mm±0.15 mm and 2.81 mm±0.13 mm in Groups A, B and C, respectively. There was no significant difference between groups (PAB=0.7, PBc=0.448). The ultimate anti-torsion torque values were 6.55 N.mi-0.25 N.m, 6.34 N'm^0.18 N'm and 6.42 N'm^0.21 N'm and fracture torsion rates were 29.51°±1.64°, 28.88±1.46° and 28.81°±1.33° in Groups A, B and C, respectively. There was no significant difference between groups (PAB=0.123, PBc=0.346). Conclusions: The biomechanical characteristics of newly formed bones from heterogeneous DPB for repairing large segmental long bone defect are comparable to those of normal bones and autologous bones. DPB has the potential for clinical usage as bone graft material.