Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, cla...Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, classification of engineering rock mass, nu- merical simulation test and back analysis based on surrounding rock’s displacement monitoring results of Shuibuya Project’s underground power station, rock mass deforma- tion module’s size effect of surrounding rock of Shuibuya Project’s undegroud power sta- tion was studied. It’s shown that rock mass deformation module’s scale effect of sur- rounding rock of Shuibuya Project’s undeground power station is obvious, the rock mass deformation module to tranquilization is 20% of intact rock’s. Finally the relation between rock mass deformation modules and the scale of research was established.展开更多
Submicron and nanostructured body-centered cubic(BCC) metals exhibit unusual mechanical performance compared to their bulk coarse-grained counterparts, including high yield strength and outstanding ductility. These pr...Submicron and nanostructured body-centered cubic(BCC) metals exhibit unusual mechanical performance compared to their bulk coarse-grained counterparts, including high yield strength and outstanding ductility. These properties are important for their applications in micro-, nano-and even atomic-scale devices as well as for their usages as components for enhancing the performances of structural materials. One aspect of the unusual mechanical properties of small-sized BCC metals is closely related to their dimensional confinement. Decreasing the dimensions of single crystalline metals or the grain sizes of polycrystalline metals contributes significantly to the strengthening of the small-sized BCC metals.In the last decade, significant progress has been achieved in understanding the plasticity and deformation behaviors of small-sized BCC metals. This paper aims to provide a comprehensive review on the current understanding of size effects on the plasticity and deformation mechanisms of small-sized BCC metals. The techniques used for in situ characterization of the deformation behavior and mechanical properties of small-sized samples are also presented.展开更多
The influence of specimen size on the mechanical behavior of Au pillars is studied by means of molecular dynamics (MD) simulations with the EAM potential.Under compression at 300 K,as the deformation of pillars is in ...The influence of specimen size on the mechanical behavior of Au pillars is studied by means of molecular dynamics (MD) simulations with the EAM potential.Under compression at 300 K,as the deformation of pillars is in the plastic stage,nucleation of partial dislocations is observed.The coupling effect of surface stress and thermal activation is considered when analyzing the size effect on the yield property of the Au pillars.It appears that both the tensile stress component and the temperature in the surface layer impart significant effect on the mechanical behaviors of the nano-sized Au pillars.展开更多
文摘Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, classification of engineering rock mass, nu- merical simulation test and back analysis based on surrounding rock’s displacement monitoring results of Shuibuya Project’s underground power station, rock mass deforma- tion module’s size effect of surrounding rock of Shuibuya Project’s undegroud power sta- tion was studied. It’s shown that rock mass deformation module’s scale effect of sur- rounding rock of Shuibuya Project’s undeground power station is obvious, the rock mass deformation module to tranquilization is 20% of intact rock’s. Finally the relation between rock mass deformation modules and the scale of research was established.
基金supported by the Key Project of the National Natural Science Foundation of China(11234011)
文摘Submicron and nanostructured body-centered cubic(BCC) metals exhibit unusual mechanical performance compared to their bulk coarse-grained counterparts, including high yield strength and outstanding ductility. These properties are important for their applications in micro-, nano-and even atomic-scale devices as well as for their usages as components for enhancing the performances of structural materials. One aspect of the unusual mechanical properties of small-sized BCC metals is closely related to their dimensional confinement. Decreasing the dimensions of single crystalline metals or the grain sizes of polycrystalline metals contributes significantly to the strengthening of the small-sized BCC metals.In the last decade, significant progress has been achieved in understanding the plasticity and deformation behaviors of small-sized BCC metals. This paper aims to provide a comprehensive review on the current understanding of size effects on the plasticity and deformation mechanisms of small-sized BCC metals. The techniques used for in situ characterization of the deformation behavior and mechanical properties of small-sized samples are also presented.
基金supported by the National Natural Science Foundation of China (Grant Nos.10872197,11021262,11172303,11132011)
文摘The influence of specimen size on the mechanical behavior of Au pillars is studied by means of molecular dynamics (MD) simulations with the EAM potential.Under compression at 300 K,as the deformation of pillars is in the plastic stage,nucleation of partial dislocations is observed.The coupling effect of surface stress and thermal activation is considered when analyzing the size effect on the yield property of the Au pillars.It appears that both the tensile stress component and the temperature in the surface layer impart significant effect on the mechanical behaviors of the nano-sized Au pillars.