期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
高炉矿渣粉作高性能混凝土掺合料的研究和应用 被引量:16
1
作者 朱桂林 孙树杉 王建华 《粉煤灰》 2001年第2期17-18,共2页
关键词 性能混凝土 掺合料 高炉 矿渣粉 力学性能
下载PDF
High-throughput studies and machine learning for design of β titanium alloys with optimum properties
2
作者 Wei-min CHEN Jin-feng LING +4 位作者 Kewu BAI Kai-hong ZHENG Fu-xing YIN Li-jun ZHANG Yong DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3194-3207,共14页
Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were hi... Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications. 展开更多
关键词 HIGH-THROUGHPUT machine learning Ti-based alloys diffusion couple mechanical properties wear behavior
下载PDF
离子源功率对a-C:H(Al)薄膜结构及性能的影响
3
作者 赵凤丽 代明江 +2 位作者 林松盛 许伟 侯慧君 《表面技术》 EI CAS CSCD 北大核心 2017年第6期143-150,共8页
目的研究离子源功率对a-C:H(Al)薄膜结构及性能的影响。方法采用阳极离子源离化CH_4气体,中频磁控溅射Al靶,通过改变离子源功率,在n(100)型单晶硅及16Mn Cr5钢基体上沉积a-C:H(Al)薄膜。利用扫描电镜、维氏显微硬度计、摩擦磨损试验机... 目的研究离子源功率对a-C:H(Al)薄膜结构及性能的影响。方法采用阳极离子源离化CH_4气体,中频磁控溅射Al靶,通过改变离子源功率,在n(100)型单晶硅及16Mn Cr5钢基体上沉积a-C:H(Al)薄膜。利用扫描电镜、维氏显微硬度计、摩擦磨损试验机和表面轮廓仪等设备对a-C:H(Al)薄膜的结构及性能进行表征。结果薄膜的硬度均在1000HV以上。摩擦系数较低,为0.05~0.15。离子源功率为450 W时,薄膜摩擦系数和结合力均出现了最优值,分别为0.05和21.46 N。离子源功率在550 W时,磨损率达到最低值,为3.59×10^(-7) mm^3/(N·m)。结论离子源功率较低时,薄膜表面较疏松,随着离子源功率的增加,薄膜逐渐趋于平整致密。随离子源功率的增加,薄膜的硬度增大,薄膜的结合力先增大后减小,而薄膜的摩擦系数先减小后增大,磨损宽度减小,磨损深度降低,磨损率减小。 展开更多
关键词 类金刚石薄膜 a-C:H(Al)薄膜 中频磁控溅射 离子源功率 结合强度 摩擦力学性能
下载PDF
晶须增强PET复合材料的增韧改性研究
4
作者 温浩宇 吴波 +2 位作者 高灵强 郭彬 李轩 《橡塑技术与装备》 CAS 2023年第7期18-21,共4页
采用双螺杆挤出共混造粒制备了硅灰石和太酸钾晶须增强的PET复合材料,对比研究了两种晶须对PET热性能和力学性能的影响,分析了增韧剂对硅灰石晶须增强PET热性能和力学性能的改性作用。结果发现,添加硅灰石和钛酸钾晶须都能够明显提升PE... 采用双螺杆挤出共混造粒制备了硅灰石和太酸钾晶须增强的PET复合材料,对比研究了两种晶须对PET热性能和力学性能的影响,分析了增韧剂对硅灰石晶须增强PET热性能和力学性能的改性作用。结果发现,添加硅灰石和钛酸钾晶须都能够明显提升PET的玻璃化转变温度,并且对PET的拉伸强度、弯曲模量和硬度也都有明显的提升作用,但会造成材料塑性和冲击强度的大幅降低;与硅灰石相比,添加钛酸钾晶须对PET强度和弯曲模量的改善效果更加明显,但所致的材料塑性和冲击强度降低也更大。添加增韧剂能够有效提升硅灰石增强PET的抗冲击强度,但对材料的硬度及热性能如玻璃化转变温度、熔点及结晶温度等不会产生明显影响。 展开更多
关键词 PET 晶须 增韧剂 性能 硬度 力学性能学
下载PDF
Iron reduction in aluminum by electroslag refining 被引量:4
5
作者 陈冲 王俊 +4 位作者 疏达 薛菁 孙宝德 薛永生 阎庆敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期964-969,共6页
The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimenta... The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimental results indicate that the iron content decreases with increasing Na2B4O7 addition and remelting time,and the iron content decreases from 0.400% to 0.184% under 9% Na2B4O7 addition for 30 min remelting.The elastic modulus,yield strength and ultimate tensile strength commercial aluminum are improved,and the tensile elongation is increased by 43% after electroslag refining.The chemical reaction between melt and slag to form Fe2B is the main reason for iron reduction and the thermodynamic calculation of the chemical reaction theoretically accounts for the formation of Fe2B. 展开更多
关键词 ALUMINUM electroslag refining IRON mechanical properties thermodynamic calculation
下载PDF
Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation 被引量:8
6
作者 刘满平 蒋婷慧 +5 位作者 王俊 刘强 吴振杰 Ying-da YU Pl C.SKARET Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3858-3865,共8页
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative... Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP. 展开更多
关键词 Al-Mg-Si aluminum alloy severe plastic deformation equal-channel angular pressing aging behavior precipitation kinetics mechanical properties strengthening mechanisms
下载PDF
Effects of stoichiometric ratio La/Mg on structures and electrochemical performances of as-cast and annealed La-Mg-Ni-based A_2B_7-type electrode alloys 被引量:3
7
作者 张羊换 杨泰 +3 位作者 翟亭亭 袁泽明 张国芳 郭世海 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1968-1977,共10页
In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type ... In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising. 展开更多
关键词 hydrogen storage alloy annealing treatment structure electrochemical performance KINETICS
下载PDF
PROPERTIES OF BIODEGRADABLE THERMOPLASTIC STARCH 被引量:1
8
作者 高建平 王少敏 +1 位作者 王为 于九皋 《Transactions of Tianjin University》 EI CAS 1997年第2期92-96,共5页
Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biod... Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification. 展开更多
关键词 thermoplastic starch BIODEGRADABILITY RHEOLOGY mechanical property
下载PDF
Phase structure and electrochemical properties of La_(0.7)Ce_(0.3)Ni_(3.75)Mn_(0.35)Al_(0.15)Cu_(0.75-x)Fe_x hydrogen storage alloys 被引量:2
9
作者 刘宝忠 李安铭 +2 位作者 范燕平 胡梦娟 张宝庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2730-2735,共6页
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves... La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance. 展开更多
关键词 hydrogen storage alloy AB5-type hydrogen storage alloys phase structures electrochemical property KINETICS Ni-MH battery LaNi5 phase
下载PDF
Preparation and mechanical properties of carbon/carbon composites with high textured pyrolytic carbon matrix 被引量:8
10
作者 李伟 李贺军 +3 位作者 王杰 张守阳 杨茜 魏建锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2129-2134,共6页
Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C)... Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process. 展开更多
关键词 carbon/carbon composites high texture chemical vapor infiltration graphitization degree mechanical properties
下载PDF
Molecular Dynamics Study of RDX/AMMO Propellant
11
作者 李苗苗 沈瑞琪 李凤生 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第2期199-205,I0004,共8页
Molecular dynamics simulations have been performed to investigate well-known energetic material cyelotrimethylene trinitramine (RDX) crystal, 3-azidomethyl-3-methyloxetane (AMMO) and RDX/AMMO propellant. The resul... Molecular dynamics simulations have been performed to investigate well-known energetic material cyelotrimethylene trinitramine (RDX) crystal, 3-azidomethyl-3-methyloxetane (AMMO) and RDX/AMMO propellant. The results show that the binding energies on different crystalline surface of RDX changes in the order of (010)〉(100)〉 (001). The interactions between RDX and AMMO have been analyzed by means of pair correlation functions. The mechanical properties of RDX/AMMO propellant, i.e. elastic coefficients, modulus, Cauchy pressure, and Poisson's ratio, etc., have been obtained. It is found that mechanical properties are effectively improved by adding some amounts of AMMO polymers, and the overall effect of AMMO on three crystalline surfaces of RDX changes in the order of (100)〉(010)〉(001). The energetic properties of RDX/AMMO propellant have also been calculated and the results show that compared with the pure RDX crystal, the standard theoretical specific impulse of RDX/AMMO propellant decrease, but they are still superior to those of double base propellant. 展开更多
关键词 Cyclotrimethylene trinitramine 3-Azidomethyl-3-methyloxetane Molecular dynamics Mechanical property Binding energy
下载PDF
First-principles investigations of structural, mechanical, electronic and optical properties of U_3Si_2-type AlSc_2Si_2 under high pressure
12
作者 张旭东 王峰 姜伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期148-156,共9页
The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a... The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications. 展开更多
关键词 U3Si2-type AlSc2Si2 mechanical properties electronic structure optical properties first-principles calculations
下载PDF
Microstructure and mechanical properties of in situ TiB_2/7055 composites synthesized by direct magnetochemistry melt reaction 被引量:1
13
作者 钟龙华 赵玉涛 +3 位作者 张松利 陈刚 陈帅 刘永红 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2502-2508,共7页
In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by... In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by XRD, OM and SEM technologies, and the mechanical and wear properties were tested. The results indicate that with the pulsed magnetic field assistance, the morphologies of in situ TiB2 particles are mainly hexagonal-shape or nearly spherical, the sizes are less than 1 μm, and the distribution of the matrix is uniform. Compared the microstructures of the 7055 aluminum matrix composites synthesized without pulsed magnetic field, the average size ofα(Al) phase with pulsed magnetic field assistance is decreased from 20 to 10μm, the array of the second phase is changed from continuous net-shape to discontinuous shape. With the pulsed magnetic field, the tensile strengths of the composites are enhanced from 310 to 330 MPa, and the elongations are increased from 7.5%to 8.0%. In addition, compared with matrix alloy, the wear mass loss of the composites is decreased from 111 to 78 mg under a load of 100 N for 120 min. 展开更多
关键词 in situ composite magnetic chemistry microstructure mechanical properties
下载PDF
Effects of dip-coated BN interphase on mechanical properties of SiC_f/SiC composites prepared by CVI process 被引量:2
14
作者 周洋 周万城 +1 位作者 罗发 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1400-1406,共7页
BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structur... BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structure was characterized by XRD and FT-IR spectra. The SiCf/SiC composites with dip-coated BN interphase were fabricated by chemical vapor infiltration (CVI) process, and the effects ofBN interphase on the mechanical properties of composites were investigated. The results show that the SiC fibers are fully covered by BN interphase with smooth surface and turbostratic structure (t-BN), and the thickness is about 0.4 μm. The flexural strengths of SiCf/SiC composites with and without BN interphase are about 180 and 95 MPa, respectively. Compared with the as-received SiCf/SiC composites, the composites with BN interphase exhibit an obvious toughened fracture behavior. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in protecting the fibers from chemical attack during matrix infiltration and weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably. 展开更多
关键词 SiCf/SiC composites BN interphase DIP-COATING CVI mechanical properties
下载PDF
Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites 被引量:10
15
作者 LÜ Pin-hui WANG Xiao-feng +2 位作者 DONG Cui-ge PENG Chao-qun WANG Ri-chu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2567-2577,共11页
The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with C... The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%. 展开更多
关键词 SiCp/Al composite surface modification electroless plating mechanical properties interfacial bonding
下载PDF
Improving effect of carbonized quantum dots(CQDs)in pure copper matrix composites 被引量:5
16
作者 HUANG Xiao BAO Rui YI Jian-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1255-1265,共11页
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was... Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites. 展开更多
关键词 carbon quantum dots copper matrix mechanical property electrical property interface bonding
下载PDF
Microstructure, hydrogen storage thermodynamics and kinetics of La_5Mg_(95-x)Ni_x(x=5, 10, 15) alloys 被引量:4
17
作者 Zhen-yang LI Sheng-li LI +2 位作者 Ze-ming YUAN Yang-huan ZHANG Yan QI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1057-1066,共10页
The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimenta... The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K). 展开更多
关键词 hydrogen storage Mg-based alloys thermodynamics performance kinetics performance Ni content
下载PDF
A Comparative Study on Hydrodynamic Performance of Double Deflector Rectangular Cambered Otter Board 被引量:6
18
作者 XU Qingchang FENG Chunlei +7 位作者 HUANG Liuyi XU Jiqiang WANG Lei ZHANG Xun LIANG Zhenlin TANG Yanli ZHAO Fenfang WANG Xinxin 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第5期1218-1224,共7页
In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the... In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the otter board had a good hydrodynamic performance with the maximum lift-to-drag ratio(K_(MAX) = 3.70).The flow separation occurred when the angle of attack(AOA) was at 45?,which revealed that the double deflector structure of the otter board can delay the flow separation.Numerical simulation results showed a good agreement with experiment ones,and could predict the critical AOA,which showed that it can be used to study the hydrodynamic performance of the otter board with the advantage of flow visualization.However,the drag coefficient in flume tank was much higher than that in wind tunnel,which resulted in a lower lift-to-drag ratio.These may be due to different fluid media between flume tank and wind tunnel,which result in the big difference of the vortexes around the otter board.Given the otter boards are operated in water,it was suggested to apply both flume tank experiment and numerical simulation to study the hydrodynamic performance of otter board. 展开更多
关键词 wind tunnel experiment flume tank experiment numerical simulation double deflector rectangular cambered otter board hydrodynamic performance
下载PDF
Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route 被引量:4
19
作者 A.FATHY Omyma EL-KADY Moustafa M.M.MOHAMMED 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期46-53,共8页
The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fra... The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fraction). Mixtures of Al-Fe were compacted and sintered in a vacuum furnace at 600 °C for 1 h. X-ray diffraction(XRD) of the samples containing 5% and 10% Fe indicates the presence of Al and Fe peaks, while sample containing 15% Fe reveals Al and Al13Fe4 peaks. The results show that both densification and thermal conductivity of the composites decrease by increasing the iron content. The presence of iron in the composite improves the compressive strength and the hardness. The strengthening mechanism is associated with the grain refinement of the matrix and uniform distribution of the Fe particles, as well as the formation of Al13Fe4 intermetallic. The measured magnetization values are equal to 0.3816×10-3 A·m2/g for 5% Fe sample and increases up to 0.6597×10-3 A·m2/g for 10% Fe sample, then decreases to 0.0702×10-3 A·m2/g for 15% Fe sample. This can be explained by the formation of the diamagnetic Al13Fe4 intermetallic compound in the higher Fe content sample detected by XRD analysis. 展开更多
关键词 Al-Fe composite powder metallurgy MICROSTRUCTURE mechanical properties magnetic properties
下载PDF
Decomposition kinetics of carbon-doped FeCoCrNiMn high-entropy alloy at intermediate temperature 被引量:9
20
作者 Jian PENG Zi-yong LI +3 位作者 Xin-bo JI Yan-le SUN Li-ming FU Ai-dang SHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1884-1894,共11页
Phase decomposition kinetics and the corresponding mechanical properties of the severe cold-rolled(SCRed) carbon-doped(1.3 at.%) equimolar FeCoCrNiMn high-entropy alloy(HEA) after being annealed at 500 ℃ were investi... Phase decomposition kinetics and the corresponding mechanical properties of the severe cold-rolled(SCRed) carbon-doped(1.3 at.%) equimolar FeCoCrNiMn high-entropy alloy(HEA) after being annealed at 500 ℃ were investigated. This single face-centered cubic(FCC) solid-solution HEA decomposed to M23 C6+L10, B2, and σ in chronological order. The formation kinetics of the L10, B2, and σ phases followed the Johnson-Mehl-AvramiKolmogorov(JMAK) equation. The yield strength of the HEA was 1520 MPa and increased to 1920 MPa after being annealed at 500 ℃ for 1 h, as a result of the formation of nanosized M23 C6 and L10. Both strength and ductility decreased after 2 d of annealing due to the increase of volume fractions and the coarsening of the M23C6 and L10 precipitates. From 4 to 32 d, the hardness was found to increase, which is ascribed to the rapid formation of the B2 and σ phases. From 32 to 64 d, the hardness increased further to finally reach about HV 760, with the FCC matrix almost exhausted to form the M23 C6, L10, B2, and σ phases. The results of this work may serve as a guide for the heat-treatment of carbon-doped HEAs. 展开更多
关键词 FeCoCrNiMn high-entropy alloy decomposition kinetics mechanical properties carbon doping
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部