Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditi...Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
Effect of tempering temperature on the microstructure and mechanical properties of AISI 6150 steel was investigated. All samples were austenitized at 870 ℃ for 45 min followed by oil quenching, and then tempered at t...Effect of tempering temperature on the microstructure and mechanical properties of AISI 6150 steel was investigated. All samples were austenitized at 870 ℃ for 45 min followed by oil quenching, and then tempered at temperatures between 200 and 600 ℃ for 60 min. The results show that the microstructure of tempered sample at 200 ℃ mainly consists of tempered martensite. With increasing the tempered temperature, the martensite transforms to the ferrite and carbides. The ultimate tensile strength, the hardness and the retained austenite decrease with increasing tempered temperature, and 0.2% yield strength increases when the temperature increases from 200 to 300 ℃ and then decreases with increasing the temperature, but the elongation and impact energy increase with increasing the tempering temperature.展开更多
Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading form...Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.展开更多
7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 hea...7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.展开更多
The microstructure,mechanical properties and damping capacity of ZK60-xY(x=0,1.5%,2.5%,4.0%,mass fraction) magnesium alloys were investigated by using the optical microscope(OM),X-ray diffractometer(XRD),universal ten...The microstructure,mechanical properties and damping capacity of ZK60-xY(x=0,1.5%,2.5%,4.0%,mass fraction) magnesium alloys were investigated by using the optical microscope(OM),X-ray diffractometer(XRD),universal tensile testing machine and dynamic mechanical analyzer(DMA).The mechanisms for damping capacity of referred alloys were discussed by Granato-Lücke theory.The results show that Y additions remarkably reduce grain size(the average grain size is 21.6,13.0,8.6 and 4.0μm,respectively),and the tensile properties are enhanced with grain refining(the yield tensile strength increases to 292 MPa from 210 MPa and ultimate tensile strength increases to 330 MPa from 315 MPa).For the ZK60-xY(x=0,1.5%,4.0%)alloys,the damping capacity decreases with the increase of Y content.However,for the ZK60-xY(x=2.5%)alloy,the damping capacity improves abnormally,which is possibly related to the formation of Mg3Y2Zn3(W)FCC phase in this alloy.展开更多
This paper shows consideration of decrease in cross-section stiffness in commonly used in practice RC (reinforced concrete) beams and slabs in cases when only reinforcing bars or only concrete compressed zone, which...This paper shows consideration of decrease in cross-section stiffness in commonly used in practice RC (reinforced concrete) beams and slabs in cases when only reinforcing bars or only concrete compressed zone, which is subjected to fire. Analyses were based on: (1) standard fire curve [EN 1991-1-2]; (2) 500℃isotherm method assumptions [EN 1992-1-2]; (3) mechanical properties of reinforcing steel heated up to high temperature. Afterwards, based on estimated decrease of cross-sections stiffness, the redistribution of bending moments was calculated in some cases of two-span RC beams and slabs subjected to fire from their bottom face. Due to the bending moment redistribution, one could expect a reduction of bending moments in span cross-sections and an increase of support bending moment. As a result of this phenomenon, the ultimate limit state of the structural multi span elements might occur after shorter fire duration than it could be expected when redistribution of bending moments is neglected.展开更多
Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induce...Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induced vacancy formation in CLAM, F82 H and α-Fe with different neutron energies and objective laws of the effect of vacancy concentration on mechanical properties of α-Fe. Damage of these typical metal engineering materials caused by neutrons is mainly displacement damage, while the displacement damage rate and the non-ionizing effect of neutrons decrease with the increase of neutron energy. The elastic modulus, yield strength, and ultimate strength of α-Fe are in the order of magnitude of GPa. However, the elastic modulus is not constant but decreases with the increase of strain at the elastic deformation stage. The ultimate strength reaches its maximum value when vacancy concentration in α-Fe is 0.2%. On this basis, decreasing or increasing the number of vacancies reduces the ultimate strength.展开更多
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金Project(2011BAE13B03) supported by the National Key Technology R&D Program of China
文摘Effect of tempering temperature on the microstructure and mechanical properties of AISI 6150 steel was investigated. All samples were austenitized at 870 ℃ for 45 min followed by oil quenching, and then tempered at temperatures between 200 and 600 ℃ for 60 min. The results show that the microstructure of tempered sample at 200 ℃ mainly consists of tempered martensite. With increasing the tempered temperature, the martensite transforms to the ferrite and carbides. The ultimate tensile strength, the hardness and the retained austenite decrease with increasing tempered temperature, and 0.2% yield strength increases when the temperature increases from 200 to 300 ℃ and then decreases with increasing the temperature, but the elongation and impact energy increase with increasing the tempering temperature.
基金Project supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,ChinaProject(2012QNZT029) supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2010ybfz088) supported by the Foundation of Excellent Doctoral Dissertation of Central South University,China
文摘Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.
文摘7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.
基金Project(10876045)supported by the National Natural Science Foundation Commission of China and China Academy of Engineering PhysicsProject(50725413)supported by the National Natural Science Foundation of China+1 种基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(CSTS2008AB4114)supported by Chongqing Science and Technology Commission(CQ CSTC)
文摘The microstructure,mechanical properties and damping capacity of ZK60-xY(x=0,1.5%,2.5%,4.0%,mass fraction) magnesium alloys were investigated by using the optical microscope(OM),X-ray diffractometer(XRD),universal tensile testing machine and dynamic mechanical analyzer(DMA).The mechanisms for damping capacity of referred alloys were discussed by Granato-Lücke theory.The results show that Y additions remarkably reduce grain size(the average grain size is 21.6,13.0,8.6 and 4.0μm,respectively),and the tensile properties are enhanced with grain refining(the yield tensile strength increases to 292 MPa from 210 MPa and ultimate tensile strength increases to 330 MPa from 315 MPa).For the ZK60-xY(x=0,1.5%,4.0%)alloys,the damping capacity decreases with the increase of Y content.However,for the ZK60-xY(x=2.5%)alloy,the damping capacity improves abnormally,which is possibly related to the formation of Mg3Y2Zn3(W)FCC phase in this alloy.
文摘This paper shows consideration of decrease in cross-section stiffness in commonly used in practice RC (reinforced concrete) beams and slabs in cases when only reinforcing bars or only concrete compressed zone, which is subjected to fire. Analyses were based on: (1) standard fire curve [EN 1991-1-2]; (2) 500℃isotherm method assumptions [EN 1992-1-2]; (3) mechanical properties of reinforcing steel heated up to high temperature. Afterwards, based on estimated decrease of cross-sections stiffness, the redistribution of bending moments was calculated in some cases of two-span RC beams and slabs subjected to fire from their bottom face. Due to the bending moment redistribution, one could expect a reduction of bending moments in span cross-sections and an increase of support bending moment. As a result of this phenomenon, the ultimate limit state of the structural multi span elements might occur after shorter fire duration than it could be expected when redistribution of bending moments is neglected.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133218110023)China Postdoctoral Science Foundation(Grant No.2014M561642)+2 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.1401091C)the Fundamental Research Funds for the Central Universities(Grant No.3082015NJ20150021)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induced vacancy formation in CLAM, F82 H and α-Fe with different neutron energies and objective laws of the effect of vacancy concentration on mechanical properties of α-Fe. Damage of these typical metal engineering materials caused by neutrons is mainly displacement damage, while the displacement damage rate and the non-ionizing effect of neutrons decrease with the increase of neutron energy. The elastic modulus, yield strength, and ultimate strength of α-Fe are in the order of magnitude of GPa. However, the elastic modulus is not constant but decreases with the increase of strain at the elastic deformation stage. The ultimate strength reaches its maximum value when vacancy concentration in α-Fe is 0.2%. On this basis, decreasing or increasing the number of vacancies reduces the ultimate strength.