Computational Fluid Dynamics(CFD)simulation is used in the study of water exchange capability,water residence time and conservative substance distribution in Yangmeikeng artificial reef area,which were helpful to mari...Computational Fluid Dynamics(CFD)simulation is used in the study of water exchange capability,water residence time and conservative substance distribution in Yangmeikeng artificial reef area,which were helpful to marine environmental quality assessment and marine ecological changing mechanism research of artificial reef area.Furthermore the distance of reef clusters is changed to investigate the hydrodynamic characters and water exchange capability of the whole reef area in order to analyze the reasonable layout of artificial reef area.展开更多
The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen influid dynamics, are studied in this paper with symbolic computation. First, the Painleve analysis is used to inve...The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen influid dynamics, are studied in this paper with symbolic computation. First, the Painleve analysis is used to investigateits integrability properties. For the identified case we give, the Lax pair of the system is found, and then the Darbouxtransformation is constructed. At last, some new soliton solutions are presented via the Darboux method. Those solutionsmight be of some value in fluid dynamics.展开更多
The author considers a thermal convection problem with infinite Prandtl number in two or three dimensions. The mathematical model of such problem is described as an initial boundary value problem made up of three part...The author considers a thermal convection problem with infinite Prandtl number in two or three dimensions. The mathematical model of such problem is described as an initial boundary value problem made up of three partial differential equations. One equation of the convection-dominated diffusion type for the temperature, and another two of the Stokes type for the normalized velocity and pressure. The approximate solution is obtained by a penalty finite volume method for the Stokes equation and a multistep upwind finite volume method for the convection-diffusion equation. Under suitable smoothness of the exact solution, error estimates in some discrete norms are derived.展开更多
文摘Computational Fluid Dynamics(CFD)simulation is used in the study of water exchange capability,water residence time and conservative substance distribution in Yangmeikeng artificial reef area,which were helpful to marine environmental quality assessment and marine ecological changing mechanism research of artificial reef area.Furthermore the distance of reef clusters is changed to investigate the hydrodynamic characters and water exchange capability of the whole reef area in order to analyze the reasonable layout of artificial reef area.
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education
文摘The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen influid dynamics, are studied in this paper with symbolic computation. First, the Painleve analysis is used to investigateits integrability properties. For the identified case we give, the Lax pair of the system is found, and then the Darbouxtransformation is constructed. At last, some new soliton solutions are presented via the Darboux method. Those solutionsmight be of some value in fluid dynamics.
文摘The author considers a thermal convection problem with infinite Prandtl number in two or three dimensions. The mathematical model of such problem is described as an initial boundary value problem made up of three partial differential equations. One equation of the convection-dominated diffusion type for the temperature, and another two of the Stokes type for the normalized velocity and pressure. The approximate solution is obtained by a penalty finite volume method for the Stokes equation and a multistep upwind finite volume method for the convection-diffusion equation. Under suitable smoothness of the exact solution, error estimates in some discrete norms are derived.