Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spec- troscopy can extract the curve of spectral gain from its parametric superfluorescence. This unique spectrum correction method...Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spec- troscopy can extract the curve of spectral gain from its parametric superfluorescence. This unique spectrum correction method enables fluorescence non-collinear optical parametric amplification spectroscopy acquiring the genuine transient fluorescence spectrum of the studied system. In this work we employ fluorescence non-collinear optical parametric amplification spectroscopy technique to study the solvation dynamics of DCM dye in ethanol solution, and confirm that genuine solvation correlation function and shift of peak frequency can be derived from transient fluorescence spectra after the spectral gain correction. It demonstrates that fluorescence non-collinear optical parametric amplification spectroscopy can benefit the research fields, which focuses on both fluorescence intensity dynamics and fluorescence spectral shape evolution.展开更多
An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a ...An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a resistance- and-compliance (RC) load through an APA was simulated with linear thermoacoustics to study the impact of load impedance on the performance of the thermoacoustic system. Based on the simulation results, analysis focuses on the distribution of pressure amplitude and velocity amplitude in APA with an RC load of diverse acoustic resistances and compliance impedances. Variation of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack, etc., versus impedance of the RC load is presented and analyzed according to the abovementioned distribution. A verifying experiment has been performed, which indicates that the simulation can roughly predict the system operation in the fundamental-frequency mode.展开更多
We establish the path integral formalism for nondegenerate parametric amplifiers in the entangled state representations. Its advantage in obtaining the energy level gap of this system is analyzed.
In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter...In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter and a parametric down-conversion amplifier. Applicationof the state is briefly discussed.展开更多
In this paper, an improved quasi-stable atmospheric pressure dielectric barrier discharge (DBD) plasma source is achieved after carefully controlled discharge voltage and current, discharge power, working gas, treat...In this paper, an improved quasi-stable atmospheric pressure dielectric barrier discharge (DBD) plasma source is achieved after carefully controlled discharge voltage and current, discharge power, working gas, treatment period, and gap between the electrodes. This plasma source has been used to modify the surface of Polybutylene Terephthalate (PBT) melt-blown nonwovens and Polyester (PET) fabrics, and the various influences on surface modification and the aging effect of treated polymeric materials have been systematically investigated. In addition, the method of spectrum analysis is also used for diagnosing plasma paramneters such as electron temperature. Experimental results indicate that both the wettablity and permeation of treated PBT melt-blown nonwovens and dyeing ability of treated PET fabrics are certainly improved.展开更多
The authors examine the distribution and varia- tion of carbon monoxide (CO) in the tropics from the sur- face to the lower stratosphere. By analyzing space-borne microwave limb sounder (MLS) measurements, measure...The authors examine the distribution and varia- tion of carbon monoxide (CO) in the tropics from the sur- face to the lower stratosphere. By analyzing space-borne microwave limb sounder (MLS) measurements, measure- ments of pollution in the troposphere (MOPITT) and mod- em-era retrospective analysis for research and applications (MERRA) meteorological products, and atmospheric chemistry and climate model intercomparison project (ACCMIP) surface emission inventories, the influences of atmospheric dynamics and surface emissions are investi- gated. The results show that there are four centers of highly concentrated CO mixing ratio over tropical areas in differ- ent seasons: two in the Northern Hemisphere and another two in the Southern Hemisphere. All of these centers cor- respond to local deep convective systems and mon- soons/anticyclones. The authors suggest that both deep convections and anticyclones affect CO in the tropical tro- posphere and lower stratosphere--the former helping to transport CO from the lower to the middle troposphere (or even higher), and the dynamical uplift and isolation effects of the latter helping to build up highly concentrated CO in the upper troposphere and lower stratosphere (UTLS). Similarly, there are two annual surface emission peaks in- duced by biomass burning emissions: one from the North- ern Hemisphere and the other from the Southern Hemi- sphere. Both contribute to the highly concentrated CO mixing ratio and control the seasonal variabilities of CO in the UTLS, combining the effects of deep convections and monsoons. Results also show a relatively steady emission rate from anthropogenic sources, with a small increase mainly coming from Southeast Asia and lndia. These emis- sions can be transported to the UTLS over Tibet by the joint effort of surface horizontal winds, deep convections, and the Asian summer monsoon system.展开更多
文摘Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spec- troscopy can extract the curve of spectral gain from its parametric superfluorescence. This unique spectrum correction method enables fluorescence non-collinear optical parametric amplification spectroscopy acquiring the genuine transient fluorescence spectrum of the studied system. In this work we employ fluorescence non-collinear optical parametric amplification spectroscopy technique to study the solvation dynamics of DCM dye in ethanol solution, and confirm that genuine solvation correlation function and shift of peak frequency can be derived from transient fluorescence spectra after the spectral gain correction. It demonstrates that fluorescence non-collinear optical parametric amplification spectroscopy can benefit the research fields, which focuses on both fluorescence intensity dynamics and fluorescence spectral shape evolution.
基金Project supported by the National Natural Sciences Foundation of China (No. 50536040)the University Doctoral Subject Special Foundation of China (No. 20050335047)+1 种基金the Postdoctoral Science Foundation of Zhejiang Province (No. 2006-bsh-21)the Natural Science Foundation of Zhejiang Province (No. Y107229), China
文摘An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a resistance- and-compliance (RC) load through an APA was simulated with linear thermoacoustics to study the impact of load impedance on the performance of the thermoacoustic system. Based on the simulation results, analysis focuses on the distribution of pressure amplitude and velocity amplitude in APA with an RC load of diverse acoustic resistances and compliance impedances. Variation of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack, etc., versus impedance of the RC load is presented and analyzed according to the abovementioned distribution. A verifying experiment has been performed, which indicates that the simulation can roughly predict the system operation in the fundamental-frequency mode.
文摘We establish the path integral formalism for nondegenerate parametric amplifiers in the entangled state representations. Its advantage in obtaining the energy level gap of this system is analyzed.
文摘In 3-mode Fock space we find a new tripartite entangled state |α,γ 】 λ,which make up a new quantum mechanical representation. The state |α,γ 】 λ, can be generated byusing the setup composing of a beam splitter and a parametric down-conversion amplifier. Applicationof the state is briefly discussed.
文摘In this paper, an improved quasi-stable atmospheric pressure dielectric barrier discharge (DBD) plasma source is achieved after carefully controlled discharge voltage and current, discharge power, working gas, treatment period, and gap between the electrodes. This plasma source has been used to modify the surface of Polybutylene Terephthalate (PBT) melt-blown nonwovens and Polyester (PET) fabrics, and the various influences on surface modification and the aging effect of treated polymeric materials have been systematically investigated. In addition, the method of spectrum analysis is also used for diagnosing plasma paramneters such as electron temperature. Experimental results indicate that both the wettablity and permeation of treated PBT melt-blown nonwovens and dyeing ability of treated PET fabrics are certainly improved.
基金supported by the National Basic Research Program of China (Grant No.2010CB428602)the National Natural Science Foundation of China (Grant Nos.41005023 and 41275046)
文摘The authors examine the distribution and varia- tion of carbon monoxide (CO) in the tropics from the sur- face to the lower stratosphere. By analyzing space-borne microwave limb sounder (MLS) measurements, measure- ments of pollution in the troposphere (MOPITT) and mod- em-era retrospective analysis for research and applications (MERRA) meteorological products, and atmospheric chemistry and climate model intercomparison project (ACCMIP) surface emission inventories, the influences of atmospheric dynamics and surface emissions are investi- gated. The results show that there are four centers of highly concentrated CO mixing ratio over tropical areas in differ- ent seasons: two in the Northern Hemisphere and another two in the Southern Hemisphere. All of these centers cor- respond to local deep convective systems and mon- soons/anticyclones. The authors suggest that both deep convections and anticyclones affect CO in the tropical tro- posphere and lower stratosphere--the former helping to transport CO from the lower to the middle troposphere (or even higher), and the dynamical uplift and isolation effects of the latter helping to build up highly concentrated CO in the upper troposphere and lower stratosphere (UTLS). Similarly, there are two annual surface emission peaks in- duced by biomass burning emissions: one from the North- ern Hemisphere and the other from the Southern Hemi- sphere. Both contribute to the highly concentrated CO mixing ratio and control the seasonal variabilities of CO in the UTLS, combining the effects of deep convections and monsoons. Results also show a relatively steady emission rate from anthropogenic sources, with a small increase mainly coming from Southeast Asia and lndia. These emis- sions can be transported to the UTLS over Tibet by the joint effort of surface horizontal winds, deep convections, and the Asian summer monsoon system.