期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
空间机械臂力学模拟件的设计与优化 被引量:1
1
作者 刘俊秀 邓宗全 +1 位作者 岳洪浩 陈正生 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第4期532-537,共6页
为降低机械臂进行地面力学实验时的成本,真实地反映机械臂的力学性能,提出一种机械臂等效力学特性的设计方法,并对机械臂力学模拟件的参数进行优化。根据机械臂的结构原理,对机械臂关节的轴承刚度、扭转刚度进行等效设计,通过目标达到... 为降低机械臂进行地面力学实验时的成本,真实地反映机械臂的力学性能,提出一种机械臂等效力学特性的设计方法,并对机械臂力学模拟件的参数进行优化。根据机械臂的结构原理,对机械臂关节的轴承刚度、扭转刚度进行等效设计,通过目标达到法对机械臂力学模拟件的参数进行优化,将力学模拟件与机械臂各质量模块的质量、质心坐标、质心各方向转动惯量等关键参数进行对比并进行实验验证。结果表明,力学模拟件与机械臂各关节模块力学参数基本一致,力学模拟件能够满足实验要求,可降低力学环境实验成本。 展开更多
关键词 机械臂 力学模拟件 多目标优化 序列二次规划法
下载PDF
同轴轻型空间遥感器支撑桁架的设计与试验 被引量:14
2
作者 张雷 金光 《光学精密工程》 EI CAS CSCD 北大核心 2010年第5期1099-1104,共6页
为满足空间遥感器的高度轻量化要求,提高其结构的基频,减少100 Hz以下低频振动的影响,研究了高比刚度的轻型支撑桁架结构。针对同轴长焦距光学系统,基于三角形稳定的原理设计了一种6杆碳纤维复合材料桁架结构,并基于有限元法完成了其优... 为满足空间遥感器的高度轻量化要求,提高其结构的基频,减少100 Hz以下低频振动的影响,研究了高比刚度的轻型支撑桁架结构。针对同轴长焦距光学系统,基于三角形稳定的原理设计了一种6杆碳纤维复合材料桁架结构,并基于有限元法完成了其优化设计,使其质量降低了11%。为验证其可行性,研制了力学模拟件,进行了工程分析和动力学试验,并讨论了分析和试验的误差来源。分析和试验显示,模拟件的固有频率超过了120 Hz,表明所设计的支撑桁架合理可行,能够满足长焦距空间遥感器的使用要求。该结构在质量为13 kg的前提下,解决了目前该型遥感器基频较低的难题,该设计已成功应用于某相机结构中。 展开更多
关键词 空间遥感器 支撑桁架 模态分析 力学模拟件 振动试验
下载PDF
CFD modeling of methane distribution at a continuous miner face with various curtain setback distances 被引量:10
3
作者 Zhou Lihong Pritchard Christopher Zheng Yi 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期635-640,共6页
Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentia... Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software. 展开更多
关键词 Mine ventilation Computational fluid dynamics Continuous mining face Airflow pattern Methane distribution
下载PDF
CFD prediction of physical field for multi-air channel pulverized coal burner in rotary kiln 被引量:8
4
作者 马爱纯 周孑民 +1 位作者 欧俭平 李旺兴 《Journal of Central South University of Technology》 EI 2006年第1期75-79,共5页
A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and tempera... A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss. 展开更多
关键词 CFD numerical simulation CFX physical field multi-air channel coal burner rotary kiln
下载PDF
Analysis of Static Pressure in Area between Back Plate and Cylinder of a Carding Machine with CFD 被引量:2
5
作者 韩贤国 孙鹏子 赵业平 《Journal of Donghua University(English Edition)》 EI CAS 2009年第3期242-246,共5页
To analyze static pressure between back plate and cylinder in an A186 carding machine,a fluid model is established. The model takes into account static pressure of airflow near back plate with the numerical simulation... To analyze static pressure between back plate and cylinder in an A186 carding machine,a fluid model is established. The model takes into account static pressure of airflow near back plate with the numerical simulation method of Computational Fluid Dynamics (CFD) in FLUENT software. The result of the simulation in the model shows that static pressure in this area quickly increases to its maximum then rapidly decreases to a lower fixed value from inlet to outlet along a zone between back plate and cylinder. Both rotating speeds of the cylinder and the taker-in affect static pressure from the inlet to the outlet,of which the cylinder rotating speed has more influence than that of taker-in. Numerical simulations reveal that static pressure on surface of back plate are in good agreement with the former result of experimental analysis. 展开更多
关键词 A186 carding machine FLUENT Computational Fluid Dynamics CFD simulation CYLINDER static pressure back plate
下载PDF
Improved parameter selection method for mesoscopic numerical simulation test of direct tensile failure of rock and concrete 被引量:1
6
作者 刘智光 陈健云 +1 位作者 白卫峰 徐强 《Journal of Central South University》 SCIE EI CAS 2010年第5期1079-1086,共8页
In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter m... In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter model based on the mesoscopic damage mechanics.The product of strength and elastic modulus of mesoscale representative volume element was considered to be one of the mechanical property parameters of materials and assumed to conform to specified probability distributions to reflect the heterogeneity of mechanical property in materials.With the improved property parameter selection method,a numerical program was developed and the simulation of the failure process of the rock and concrete specimens under static tensile loading condition was carried out.The failure process and complete stress-strain curves of a class of rock and concrete in stable fracture propagation manner under uniaxial tension were obtained.The simulated macroscopic mechanical behavior was compared with the available laboratory experimental observation,and a reasonable agreement was obtained.Verification shows that the improved parameter selection method is suitable for mesoscopic numerical simulation in the failure process of rock and concrete. 展开更多
关键词 ROCK CONCRETE stable fracture propagation product of strength and elastic modulus HETEROGENEITY numerical simulation uniaxial tension
下载PDF
A Simulation Software for the Prediction of Thermal and Mechanical Properties of Wood Plastic Composites
7
作者 Ritu Gupta Norrozila Binti Sulaiman +1 位作者 Arun Gupta M.D.H. Beg 《Computer Technology and Application》 2013年第1期1-5,共5页
Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final qu... Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation. 展开更多
关键词 Wood plastic composite simulation software heat transfer mechanical properties.
下载PDF
Mechanical response features and failure process of soft surrounding rock around deeply buried three-centered arch tunnel 被引量:1
8
作者 赵瑜 张志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4064-4073,共10页
Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Base... Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties(PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model(PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load(HL) was in the range of 130 k N to 170 k N, the vertical load(VL) was in the range of 119 k N to 153.8 k N), rapid crack coalescence(the HL was in the range of 170 k N to 210 k N, the VL was in the range of 153.8 k N to 182.5 k N) and residual strength(the HL was greater than 210 k N, the VL was greater than 182.5 k N). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3 D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the relationship of deformation localization and progressive failure of SR around a tunnel under high stress conditions was discussed. 展开更多
关键词 deeply buried tunnel physical model(PM) surrounding rock(SR) failure process
下载PDF
Numerical simulation study of gob air leakage field and gas migration regularity in downlink ventilation 被引量:4
9
作者 ZHANG Jian-rang WANG Chun-qiao DONG Ding-wen 《Journal of Coal Science & Engineering(China)》 2011年第3期316-320,共5页
Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influ... Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influence of natural wind pressure to analyze the stope face differential pressure, gob air leakage field distribution and gas migration regularity theoretically. Established a two-dimensional physical model with one source and one doab, and applied computational fluid dynamics analysis software Fluent to do numerical simulation, analyzed and contrasted to the areas of gob air leakage on size and gas emission from gob to working face on strength when using the downlink ventilation and uplink ventilation. When applied downward ventilation in stope face, the air leakage field of gob nearly working face, and the air leakage intensity were smaller than uplink, this can effectively reduce the gas emission from gob to working face; when used downlink ventilation, the air leakage airflow carry the lower amount of gas to doab than uplink ventilation, and more easily to mix the gas, reduced the possibility of gas accumulation in upper comer and the stratified flows, it can provide protection to mine with safe and effective production. 展开更多
关键词 downlink ventilation natural wind pressure air leakage field gas migration numerical simulation
下载PDF
Dynamics Model and Simulation of Polyethylene Terephthalate (PET) Hollow Fiber
10
作者 王朝生 赵瑞辉 +4 位作者 韩庆祥 张传雄 王华平 张勇 肖刚 《Journal of Donghua University(English Edition)》 EI CAS 2009年第4期387-392,共6页
On the basis of melt-spinning, the dynamics model of polyethylene terephthalate (PET) hollow fiber is established. The effects of spinning conditions on hollow ratio are discussed and verified. Because of the differ... On the basis of melt-spinning, the dynamics model of polyethylene terephthalate (PET) hollow fiber is established. The effects of spinning conditions on hollow ratio are discussed and verified. Because of the different quenching conditions, there exist differences of the hollow ratio and the vitrification distances between different cycles. The important role of the quenching conditions on the meltspinning of PEr hollow fiber is also mentioned. 展开更多
关键词 hollow fiber PET MELT-SPINNING SIMULATION hollow ratio
下载PDF
Marine Current Turbine Simulator Development Based on Hardware in the Loop Simulation Concept
11
作者 G. Caraiman C. Nichita +1 位作者 V. Minzu B. Dakyo 《Journal of Energy and Power Engineering》 2011年第9期877-885,共9页
This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kine... This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment. 展开更多
关键词 Energy conversion hardware in the loop simulation marine current turbine doubly feed induction generator
下载PDF
Numerical Simulation and Kinetic Analysis of Turbine Sail
12
作者 Hu Yihuai Wang Taiyou Luan Yongli 《Journal of Energy and Power Engineering》 2017年第2期127-134,共8页
This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are describ... This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are described with RNG k-e turbulence model and the numerical simulation is carded out with Fluent software. The influence of sail's structure is analyzed including plate, separation type and height/width ratio. The lift coefficients and drag coefficients of the simulated turbine sail are calculated under different rotation angles, suction intensity and separation plate position. The calculated results are compared with the wind tunnel experimental results, which verifies the feasibility of the numerical results and establishes a foundation for the optimal design of turbine sails. 展开更多
关键词 Turbine sail aerodynamic characteristics fluent calculation wind tunnel test.
下载PDF
Investigation and Verification of the Aerodynamic Performance of a Fan/Booster with Through-flow Method 被引量:2
13
作者 LIU Xiaoheng JIN Donghai GUI Xingmin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第2期103-110,共8页
Through-flow method is still widely applied in the revolution of the design of a turbomachinery, which can provide not merely the performance characteristic but also the flow field. In this study,a program based on th... Through-flow method is still widely applied in the revolution of the design of a turbomachinery, which can provide not merely the performance characteristic but also the flow field. In this study,a program based on the through-flow method was proposed, which had been verified by many other numerical examples. So as to improve the accuracy of the calculation, abundant loss and deviation models dependent on the real geometry of engine were put into use,such as: viscous losses,overflow in gaps, leakage from a flow path through seals. By means of this program, the aerodynamic performance of a certain high through-flow commercial fan/booster was investigated. On account of the radial distributions of the relevant parameters, flow deterioration in this machine was speculated. To confirm this surmise, 3-D numerical simulation was carried out with the help of the NUMECA software. Through detailed analysis, the speculation above was demonstrated, which provide sufficient evidence for the conclusion that the through-flow method is an essential and effective method for the performance prediction of the fan/booster. 展开更多
关键词 fan/booster through-flow method axisymmetric flow NUMECA simulation
原文传递
Molecular Dynamics Simulations of the Elastic Anisotropy of Pd at Extreme Conditions
14
作者 Xiu-Lu Zhang Yun-Xia Han +2 位作者 Hong Jia Nuo Qu Zhong-Li Liu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第6期735-740,共6页
It is very interesting to discover the elastic properties of engineering material palladium, especially its elastic anisotropy along Hugoniot states. We here investigate the evolution of its high pressure and temperat... It is very interesting to discover the elastic properties of engineering material palladium, especially its elastic anisotropy along Hugoniot states. We here investigate the evolution of its high pressure and temperature(PT) elastic ansotropy along Hugoniot using molecular dynamics simulations based on accurate classical interatomic potential. In order to testify the validity of the interatomic potential of Pd in describing the high PT elastic properties, we calculate its isothermal and adiabatic elastic moduli using molecular dynamics method. The obtained data are in good agreement with experimental data. From the isothermal elastic constants, we deduce the Hugoniot acoustic velocities and find that the resulting data are in good agreement with experimental acoustic velocity data. Based on the reliable elastic constants, we further investigate the spacial elastic ansotropy along Hugoniot PT states. It is found that the spacial elastic anisotropy of Pd increases along Hugoniot states. 展开更多
关键词 elastic anisotropy Hugoniot states extreme conditions
原文传递
Impact of Stagger Angle Nonuniformity on Turbine Aerodynamic Performance 被引量:1
15
作者 Weihao Zhang Zhengping Zou +3 位作者 Shangneng Pan Huoxing Liu Huoxing Liu Wei Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第5期465-472,共8页
The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with ... The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with the same profile,but uniform and nonuniform vane stagger angle respectively,were conducted in both steady and unsteady methods.The results indicate that certain changes in the detailed flow field of the turbine occur when the stagger angles are nonuniform,further,the blade loading distribution of the vane and rotor become markedly different from that in uniform vane stagger angle situation.Then these consequences caused by nonuniformity mentioned above enhance the unsteadiness of the flow,finally,the aerodynamic performance changes dramatically.It also shows that,compared with steady simulation,the unsteady numerical simulation is necessary in this investigation. 展开更多
关键词 assembling error stagger angle nonuniformity TURBINE aerodynamic performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部