Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properti...Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.展开更多
The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space man...The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.展开更多
文摘Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.
文摘The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.